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ABSTRACT 

Impacts of Climate Change and Weather Modification on Hydrologic 
Characteristics of Watersheds in the Western United States 

by 

Anil Acharya 

Dr. Thomas C. Piechota, Examination Committee Chair 
Director of Sustainability and Multidisciplinary Research 

Professor, Civil and Environmental Engineering 
University of Nevada, Las Vegas 

This research quantifies the impacts of climate change and weather modification 

(WM) on hydrologic characteristics of watersheds in the arid regions of the western 

United States. This research performs a long-term simulation of streamflow for present 

and future climate conditions in the North Platte (NP) Watershed, Wyoming; a shorter 

duration simulation is then performed to observe the likely impacts of event based 

changes in an urban watershed in Las Vegas, Nevada.  

First, a study is carried out in Chapter 3 that evaluates the impacts of WM on 

water supply by developing a hydrologic model for the NP Watershed. The variable 

infiltration capacity (VIC) model is calibrated using daily meteorological forcings and 

monthly streamflow data. An average increase of 0.3% to 1.5% in annual streamflow is 

simulated from the Wyoming area of the watershed for a 1% to 5% increase in 

precipitation. The centralwest and southwest regions of the watershed, which consist of 

higher percent coverage of evergreen needleleaf and woodland forest, are found to be 

more effective for cloud seeding operations. For proposed WM programs or programs 

that are claimed effective based on precipitation augmentation, the hydrological impacts 

can be evaluated based on this analysis. 
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Second, Chapter 4 develops streamflow projections to assess water availability in 

the NP watershed under anthropogenic climate change conditions. The multi-model 

multi-scenario climate data available from the World Climate Research Programme’s 

(WCRP’s) are utilized. The simulated streamflows are compared using an inter-model 

inter-scenario approach. Average streamflow shows an increasing pattern over this 

century with maximum streamflow during 2085-2090. The simulated streamflows for 

future periods (2011-2040, 2041-2070, and 2071-2100) vary from -20% to 62% with 

respect to the baseline period (1971-2000). The wet months are getting wetter, while the 

dry months are found to become dryer under changing climatic conditions. The 

streamflow projections and the range of streamflow can be utilized by decision makers in 

future water supply and demand management study. 

Finally, the research is extended in the urban Las Vegas area (Flamingo- 

Tropicana watershed) that utilizes the Master Plan Update (MPU) model and the 

WCRP’s multi-model data to observe the impacts of climate change on extreme storm 

events. The summer storms, which are considered as extreme storms, are expected to be 

more intense in future. A larger change in peak streamflow and total runoff volume is 

simulated for the extreme storm under different climate scenarios and time periods; the 

simulated increase in peak streamflow varies from 40% to more than 150%. These results 

can be utilized for various design purposes in the watershed to mitigate runoff impacts of 

intense storms under changing climatic conditions. 

This research assesses water availability for the NP watershed and evaluates the 

vulnerability of existing flood control system for the FT watershed. These results can be 

utilized by water managers in regional water resources development and management. 
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CHAPTER 1  

INTRODUCTION 

1.1 Background 

The impact of climate change on water resources is a major issue for the world. 

Climate change and increasing temperature trends are likely due to increasing 

anthropogenic activities (IPCC, 2007). In scenarios where carbon dioxide (CO2) is 

doubled, the increase in global temperature, as simulated by Global Climate Models 

(GCMs) UKH1, was 3.5ºC (Houghton et al, 1990); 4ºC for CSIRO4 (Gordon et al., 1992) 

and 4.8ºC for CSIRO9 (Watterson et al, 1995). Although various uncertainties exist in 

climate modeling, the conclusion that the average temperature of the Earth is rising is 

provided by International Panel on Climate Change (IPCC) with a high level of certainty. 

National Aeronautics and Space Administration (NASA, 2008) has reported that, almost 

90% of the observed changes on physical and biological systems on a global scale are 

much more likely due to increased warming with the remaining due to other driving 

forces such as landuse (urbanization).  

Variability over the Earth’s climate has been observed by paleoclimate 

reconstructions. Past climatic shifts such as glacial and interglacial cycles and the 

variations in the global ocean circulation can significantly affect the climate (Stute et al., 

2001). Changes observed in interannual to interdecadal teleconnections in the ocean 

atmosphere climate variability such as the El Niño Southern Oscillation (ENSO), North 

Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO) may cause 

drastic change in climatic conditions around the globe; ENSO and PDO have a strong 

effect in the United States (U.S.) regions (Iorio et. al, 2004). El Niño is the warming 
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phase while La Niña is the cold phase of Southern Oscillation; El Niño represents the 

largest natural variation in climate (Mantua et al, 1997). The increase in El Niño intensity 

has been documented from 7000 years ago; it increased the temperature in West 

Antarctica by 5 to 7°C during 1939-1942 (Rodbell et al, 1999). These types of irregular 

and natural variations in climate affect the sea level pressure, sea surface temperature, air 

temperature, streamflow and other hydrological phenomenon (Mantua et al, 1997). It has 

been documented that the extreme weather events such as droughts, intense rainfalls, 

hurricanes, cold temperatures, change in the amount of snow and storms could be the 

result of these natural variations in climate (e.g. Hidalgo and Dracup, 2003).  

There is a high probability of unequal distribution of water throughout the world. 

Climate change has increased the risk of floods and droughts in many regions (IPCC, 

2001). The likely impacts of climate change are already documented by various studies in 

different parts of the world (e.g. Arnell and Reynard, 1996; Strzepek and Yates, 1997; 

Leung and Wigmosta, 1999; Pfister et al, 2004; Li et al, 2008). The major impacts are 

observed on the hydrological cycle and regional water availability for industry, domestic 

use, flood control, irrigation and agriculture, aquatic life survival, reservoir operation and 

navigation. The hydrologic response due to climate change further affects the strategies 

and polices of water resources management (Liu et al, 2007; Barontini et al, 2009).  

Climate change is occurring due to natural variability as well as human induced 

activities, the later is attributing for additional impacts. There still exist uncertainties 

while evaluating the impacts due to human induced climate change alone. It is necessary 

to quantify the impacts of climate change attributed to human activities which include 

anthropogenic activities and land use changes. However, weather modification is also a 
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major concern at some regions of the world including the western United States. The 

overall goal of the proposed research is to assess the possible impacts of climate change 

and weather modification on the regional hydrologic characteristics of watersheds in the 

western United States.  

 

1.2 Weather Modification and its Impact on Water Supply 

Snowpack augmentation and runoff enhancement are considered an integral part 

of regional water management in many arid and semi arid regions. The longer droughts in 

the arid regions have caused the necessity of weather modification (WM), or cloud 

seeding programs, so as to increase precipitation by utilizing the clouds in the sky. WM 

modifies the local weather conditions to alter or improve the unpleasant and disastrous 

variations of the weather (Kethley, 1970). With increasing water demand, the WM 

projects, which are also known as the precipitation enhancement projects, are expected to 

increase in different parts of the world.  

Most of the cloud seeding activities inside the U.S. have been operating in the 

western region since the 1950s to fulfill the increasing water demand in these regions. 

Reconstructed climate data has indicated the occurrence of very lengthy and severe 

droughts in the arid western U.S. in the past (USGS, 2004). The 2000-2004 Colorado 

River drought resembles one of those droughts which is most common for the western 

United States (Ryan et al, 2005). The Colorado River Basin, a major source of water 

supply for the western U.S., has been in a drought since 1999 (BOR, 2006). Snowmelt 

runoff is the major source of water supply in the western U.S. but a significant decrease 

in the mountain snowpack is noticed in the last century in these regions (Mote et al., 
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2005). In California, there is a need of at least two million more acre feet of water to 

sustain urban growth by 2030 (Shaw, 2006). The United States Department of Interior 

(U.S. DoI, 2003) has also reported the continuous increase in the consumptive use of 

water in the West to sustain urban growth. It could create serious water conflicts in the 

future while meeting the higher water demand. In addition, decreased snowpack runoff 

may impact production of hydroelectric power, thus creating adverse impacts on the 

power demand of California and other western States (Griffith and Solak, 2006; Hunter, 

2007). The trend of increasing water demand and declining snowpack could worsen the 

situation even more if no significant action is taken (U.S. DoI, 2003). WM programs have 

been considered the most attractive option for increasing water availability. 

Many cloud seeding projects has been ongoing in the headwater watersheds of the 

Colorado River Basin. A properly designed and implemented WM program are 

considered to increase snowpack in the range of 5% to 15% (average 10%) (AMS, 1998; 

WMA, 2005). Cloud seeding is supposed to contribute from 0.8 to 1.8 million acre-feet 

(MAF) of water for Colorado River Basin, which could result in a favorable benefit cost 

ratio for the program (Ryan et al, 2005; WMA, 2005; Griffith and Solak, 2006). The 

feasibility study of the operational cloud seeding program in the Salt River and the 

mountains of Wyoming have shown an average increase of 10% in November through 

March precipitation (Griffith et al, 2007). The Wyoming Water Development 

Commission (WWDC) through the Wyoming Weather Modification Pilot Project 

(WYMPP) has conducted the silver iodide based cloud seeding during the winter period 

(60-80 days) in between the months of November and March (WWDC, 2005). Most of 

the cloud seeding for the WYMPP is done in the North Platte watershed (Sierra Madre 
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and Medicine Bow ranges) in south central Wyoming and Wind Range River in west 

central Wyoming. Around 250 storm events are estimated in the target areas to attain a 

15% increase in precipitation (Breed, 2008). The present available water resources in the 

Platte River basin in Wyoming are fully allocated (WWDC, online accessed 2010). 

Under a moderate population growth, the water demand in Green River Basin is expected 

to increase from 73 to 82 percent of its allocation given in the Colorado River and up to 

88 percent in the Wind River (Big Horn) Basin. WWDC (2010) has estimated an 

additional 130,000 to 260,000 acre-feet (AF) of water each spring for a 10% increase in 

precipitation from the proposed pilot projects. However there is a need to further evaluate 

this and quantify the impacts. Snowpack augmentation in the basin through WM 

programs is expected to increase the water availability to meet increasing water demand 

and improve the water level of the reservoirs. 

The WM programs are operating based on cost versus probabilistic benefit 

analysis (NRC, 2003). Although various improvements and advance technologies have 

been utilized since the start of the WM programs, there still exist uncertainties which 

restrict the verification of the direct impacts of these activities. Additional experiments 

are needed to reduce the existing uncertainties associated with the impacts of WM 

programs. It is necessary to evaluate the possible impacts of the ongoing WM programs 

which will determine whether and to what extent the implemented programs could 

produce the claimed results.   
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1.3 Impacts of Climate Change on the North Platte Basin, Wyoming 

The IPCC (2007b) suggests the general trend of increasing temperature (and drier 

conditions) in mid latitudes. Saunders and Maxwell (2005) have suggested that the 

continuous climate disruption in the western U.S. is likely to result in higher 

temperatures, declining snowpack, lower snow water content, earlier snowmelt and shift 

in streamflow timing (Hunter, 2007). Several past studies have documented the similar 

types of hydroclimatic changes in the western United States (Hidalgo et al, 2009). As 

mentioned earlier, the trend of declining snowpack and increasing water demand is 

primarily driven by an increase in temperature (Mote et al, 2005). The increase in 

temperature and the observed reduction in snowpack (1950-1999) are attributed to higher 

anthropogenic input of GHGs, ozone and aerosols (Pierce et al, 2008). The U.S. Global 

Change Research Program (2009) has reported a strong seasonal climatic variation in the 

arid western regions of U.S. in the past. The greatest seasonal change was observed 

during the winter months. With projected temperature changes over this century, a 

maximum rise in temperature is observed for the regions with the summer changes (more 

than 10ºF) being larger than the winter. The North Platte Basin in Wyoming is a region in 

the western U.S. and the temperature and precipitation are projected to change in the 

future.  

The dominant affect of anthropogenic climate change could continue into the 

future which may induce additional changes in the hydrology and discharge regime of the 

basin and several other indirect consequences. The human induced anthropogenic 

activities might lead to increased flood risk in the future (Bronstert et al, 2002). Research 
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is necessary at a regional scale that could quantify the future impacts of 

anthropogenically forced climate change on the hydrologic characteristics of the basin.   

Most studies have utilized output from GCMs to evaluate the impacts of climate 

change under increased greenhouse conditions (e.g. Chiew et. al, 1995; Cameron et al, 

2000; Bergstrom et al., 2001; Li et al, 2008). Various climate scenarios and GCMs for 

regional analysis have simulated different results. Research on climate change with more 

reliable methods is necessary to reduce the uncertainties observed in the past results. 

Recently, the statistically downscaled high resolution data (12km) for 112 contemporary 

climate projections of 3 major climate scenarios (from IPCC) and 16 robust climate 

models are available through the World Climate Research Programme’s (WCRP’s) 

Coupled Model Intercomparison Project phase 3 (CMIP3) multi model dataset for the 

whole contiguous United States. There is a need to quantify the changes in hydrologic 

characteristics of the North Platte River basin under future anthropogenic activities by 

incorporating the WCRP’s multi-model climate projection dataset. 

 

1.4 Climate Change and Extreme Precipitation Events  

The above studies are important as they assess water availability in the future at a 

monthly to annual timescale. The simulation of the extreme precipitation events is also 

important, since the increase in the frequency and intensity of extreme rainfall events 

may cause serious impacts on both environmental and human systems in terms of 

increased frequency and severity of floods. The extreme flows are predicted to increase 

more than mean flows under different climate change conditions (Arnell et al, 2003). 

Under the enhanced greenhouse conditions, the possibility of significant increases in the 
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frequency and magnitude of extreme daily precipitation both at global and regional scale 

is supported by various studies (Fowler and Hennessey, 1995; Hennessey et al, 1997; 

Zwiers and Kharin, 1998; Groisman et al, 1999; McGuffie, 1999; Kharin and Zwiers, 

2000; Frich et al, 2002; Semenov and Bengtsson, 2002; Fowler and Kilsby, 2003b). The 

warmer temperature due to enhanced greenhouse gas increases the moisture holding 

capacity; thus the amount of rainfall as well as the percentage of convective rainfall 

events increases (Gordon et al., 1992). Easterling et al. (1999) have suggested the higher 

occurrence of various extremes in the U.S. since the 1970s. The increase in extreme 

precipitation events is contributing to increasing number of days of higher precipitation 

(>50 mm) and the frequency of occurrence of events in the United States (Karl et al., 

1996; Karl and Knight 1998). An increase of at least 5% in mean summer precipitation is 

documented in the past century and an increase of 20% of summer daily precipitation is 

suggested in future in the northern countries (Canada, Norway, Russia, Poland) and mid 

latitude countries (U.S., Mexico, China, Australia) for the same increase in mean summer 

precipitation (Groisman et al, 1999).  

The evaluation of extreme events requires either the use of regional climate 

models (RCMs), high resolution GCMs, or the downscaling of data to a smaller time 

scale to improve the analysis and accuracy of the GCM results (Mearns et al. 1995; Kim 

et al, 2002). The use of coarser GCMs in the past century did not simulate the extreme 

rainfall events well (Rind et al, 1989; Mearns et al, 1990; Cubasch et al, 1995). The 

GCMs were also running under the scenario of doubling of CO2 or using only a few 

climate projections. This restricted the full range of scenarios thus increasing the 

uncertainty related to future climate change. The multi-model or multi-scenario approach 
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with the inclusion of high resolution simulation at present addresses some uncertainties in 

the impact studies of extreme precipitation events at global scale (McGuffie et al, 1999; 

Palmer and Ra¨isa¨nen, 2002; Semenov and Bengtsson, 2002; Voss et al, 2002; 

Watterson and Dix, 2003; Tebaldi et al, 2006; Buonomo et al, 2007). The summer is 

expected to dry further, while the increase in the intensity and decrease in the return 

period for both shorter and longer duration extreme precipitation events is expected in 

most areas based on the results from climate models (Christensen and Christensen, 2003; 

Fowler and Kilsby, 2003a). There are, however, some uncertainties while analyzing the 

results at a regional scale (May et al, 2002; Voss et al, 2002; Huntingford et al, 2003; 

Kiktev et al, 2003).  

The change in the intensity of extreme storm events, which are likely to occur as 

summer monsoon storms, are found disproportionately very large as compared to changes 

in precipitation during other seasons (Zwiers and Kharin, 1998; Groisman et al, 1999). 

The types of runoff producing storms in arid regions are mainly local, high intensity, 

convective thunderstorms and occur for very short periods over small areas (Pilgrim et 

al., 1988). The response of streamflow to changes in precipitation may range from a 

double in wet and temperate areas to more than 5 times in arid areas (Chiew et. al, 1995). 

The semi arid areas of southwestern Nevada such as Las Vegas are of particular interest 

as the summer storms, which are mostly developed by convective storms and rapid 

thunderstorms and occurring only for a short duration, have caused heavy damages to life 

and the property in the past (CCRFCD, 2006). The intense thunderstorms occur during 

the summer months and are localized. The projection of changes in extreme precipitation 

has shown the greatest increase in the precipitation intensity for the most intense storms 
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(i.e. extreme short duration storms) (Ra¨isa¨nen and Joelsson, 2001; Buonomo et al, 

2007).  

As mentioned earlier, the statistically downscaled high resolution data for 3 major 

climate scenarios (from IPCC SRES report) and 16 robust GCMs can be retrieved from 

WCRP’s CMIP3 dataset. Research is needed to quantitatively assess the watershed level 

impacts for event based changes under different climate conditions by utilizing the 

WCRP’s downscaled multi model dataset.  

 

1.5 Research Goals and Research Questions 

This research presents the quantitative assessment of the hydrological impacts due 

to weather modification and climate change that are mostly attributable to human 

activities. The proposed research will incorporate hydroclimatic modeling as tools for 

answering the research questions below. 

 Research Question 1. How would a hydrologic model be utilized to evaluate the 

possible impacts of weather modification on water supply of a watershed? 

 Hypothesis 1. Based on the feasibility study, the operational cloud seeding 

programs in the North Platte watershed is expected to increase precipitation (snowpack) 

by 10%. This increase of snowpack may augment annual and seasonal streamflow and 

reduce the impact of declining streamflow during dry periods.    

 Research Question 2. How would a robust downscaling technique and the use of 

a suitable land surface hydrologic model be utilized to quantitatively assess the long term 

response of streamflow based on forecasted global climate change scenarios? 
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 Hypothesis 2. Based on complex topography and diverse climate regime of the 

western U.S., the use of higher resolution climate data and hydrological model may 

simulate more realistic hydrological changes. The climate parameters such as temperature 

and precipitation are expected to change under anthropogenic climate change conditions. 

The long term streamflow projections, which are based on bias corrected and statistically 

downscaled WCRP CMIP3 multi-model dataset, may be used to determine the future 

water availability in the basin under changing climatic conditions.     

 Research Question 3. How would an urban basin respond to the most intense 

storm under projected climate change conditions?  

 Hypothesis 3. The intensity of extreme storm events is expected to increase under 

anthropogenic climate change conditions. The impacts of intense storms on streamflow 

are expected to be more in arid urban areas. The higher resolution and downscaled 

WCRP CMIP3 data can be used to determine the change in intensity of extreme storms, 

which may contribute to changes in peak runoff and total runoff volume for the basin. 

 

1.6 Research Tasks 

Task 1 develops a hydrologic model for the North Platte watershed. Further, 

‘what if’ scenarios are run to quantify the significant changes in streamflow (annual and 

seasonal) for an increase of precipitation due to cloud seeding operations in the 

watershed. Additionally, this analysis identifies the most favorable region and landcover 

for cloud seeding operations in the watershed. Task 1 creates a continuous simulation by 

using the Variable Infiltration Capacity (VIC) macro-scale semi distributed land surface 

hydrologic model.  
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Task 2 utilizes the model from Task 1 and develops long term streamflow 

projections for the watershed by incorporating output from multiple climate emission 

scenarios and GCMs. Statistically downscaled WCRP’s CMIP3 multi-model dataset are 

used to quantify the impacts of anthropogenic climate change conditions on hydrologic 

response of the basin. The inter-model inter-scenario comparisons are performed to 

observe the changes in streamflow for future climate, which are a result of changes in 

precipitation, temperature (min and max), wind speed, type of vegetation and soil 

classification. A Kolmogorov Smirnov (KS) goodness of fit test is applied to test if there 

exists any significant difference in streamflow distributions in between the emission 

scenarios and for different time periods. Both tasks provide an idea of water availability 

for different climate change conditions attributed to human activities.  

Task 3 utilizes the Master Plan Update (MPU) model and WCRP’s CMIP3 multi-

model dataset to observe the impacts of climate change on extreme storm events in the 

urban Las Vegas area. Various climate scenarios based on multi-model data are forced 

into the MPU model. The changes in streamflow (peak runoff and total runoff volume) 

are quantified with respect to changes in rainfall intensity for the intense storms. This 

allows for the evaluation of vulnerability of existing flood control system under forced 

anthropogenic climatic conditions.  

A proper understanding of the impacts of climate change at a regional scale is 

important for local impact analysis. Overall, this research helps to better understand and 

estimate the impacts of climate change which could be beneficial for further planning, 

management and implementation of water resources projects.  
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1.7 Dissertation Outline 

This dissertation is comprised of six major chapters. Chapter 1 provides an overall 

introduction, problem statements and the major objectives of this research. Chapter 2 

reviews the literatures and technical reports related to climate change and weather 

modification. Chapter 3, 4 and 5 corresponds to a separate analysis performed for Tasks 

1, 2 and 3 respectively. Each of these chapters is comprised of a journal article, which 

incorporates the introduction, objective, methodology, results and conclusion for each 

task. Chapter 6 provides the contributions from this research and recommendations for 

future work. 
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CHAPTER 2  

REVIEW OF RELATED LITERATURE 

Overall, this research assesses the impacts of climate change on regional 

hydrology. This chapter first reviews literature of climate change studies and then 

reviews weather modification (WM) studies. The major areas under the climate change 

section include the various methods and the major uncertainties included in past studies. 

The major areas covered under the WM section are the various methods, the 

environmental impacts, uncertainties and the evaluation criteria. 

 

2.1 Climate Change 

The Earth’s climate has seen major changes over its history (Stute et al, 2001). 

The major drivers of climate change prior to industrial era are considered to be the result 

of changes in the Earth’s orbit, sun’s intensity, volcanic eruptions (aerosol and carbon 

dioxide emissions), greenhouse gas (GHG) concentrations and ocean currents (EPA, 

2009). Present climate change is described as the combination of natural and human 

induced changes. Climate change, especially the increase in temperature, is mostly likely 

due to increasing anthropogenic activities (IPCC, 2007a, 2007b). The concentration of 

anthropogenic gases (especially the emission of CO2) could nearly double by 2100 if the 

1990 level of emissions continues at the same rate (Loaiciga et al, 1996 adopted from Xu, 

1999). The greenhouse gases trap the heat in the atmosphere, thus warming the Earth’s 

climate, which is known as global warming. Climate change could affect the hydrologic 

response of watersheds as well as their water quality aspects. It could intensify the 
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frequency and intensity of rainfall which results in increased runoff, more pollution and 

sedimentation (IPCC, 2007b).  

2.1.1 Climate Emission Scenarios 

The Synthesis Report from International Panel on Climate Change (IPCC, 2007b) 

has reported a more than 70% increase in the emissions of greenhouse gases due to 

human activities during the period of 1970-2004. The annual emission of CO2 alone 

represents almost 77% of this total increase. GHG emissions, measured in terms of CO2 

equivalent emission, have more than doubled during this period. The increase in global 

mean surface and ocean temperatures have impacted sea level rise and melting of ice in 

the past. These impacts are likely to continue into the future if natural and anthropogenic 

emissions also continue to increase. If the future GHG emissions are stabilized, the total 

emission at present is likely to increase mean global temperatures and sea levels to a 

certain degree. As CO2 concentrations double, due to GHG emission at or higher than the 

current rate, the temperature is expected to increase in the range of 2 ºF to 4.5ºF until the 

end of this century. 

The model control runs (i.e. no change in future emission) and the idealized 

assumption of 1% CO2 increment per year represent the most scientific climate change 

scenario with no other external effects. These model runs are collected and archived at 

the Program for Climate Model Diagnosis and Intercomparison (PCMDI) for public 

access (Meehl et al, 2007). Six illustrative emission scenarios included in the IPCC 

Special Report on Emissions Scenarios (SRES) act as a basis for most of the climate 

change research at present. These scenarios act as ‘marker’ scenarios for future GHG 

emissions representing the CO2 emissions projections produced by a range of integrated 
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assessment models based on a range of socio-economic storylines. The projected CO2 

emission scenarios consider the demographic, socio-economic and technological changes. 

However, no additional changes are assumed in future climate policies. The emission 

scenarios are identified as A2 (higher emission), A1B (moderate emission), B2 and B1 

(lower emission) which are discussed in detail as follows;  

A1 Emission Scenario: This scenario assumes the world of global population growth 

that peaks in mid century. It considers very rapid economic growth and rapid introduction 

of new and more efficient technology. It is categorized into three types based on the three 

directions of technological change: fossil intensive (A1F1), non fossil source (A1T), and 

balance of all sources (A1B). 

A2 Emission Scenario: This scenario assumes a very heterogeneous world of high 

population growth with less concern for rapid economic development and technological 

change. It assumes uneven economic growth and income gap between industrialized and 

developing parts of the world. It gives less emphasis on economic, social and cultural 

interactions between regions, and more emphasis on self reliance of the resources. 

B1 Emission Scenario: This scenario assumes a convergent world (unlike in A2) with 

high population growth that peaks in mid century. It considers rapid changes in economic 

structures towards service and information. It emphasizes more on environmental and 

social aspects of development for a more sustainable future.  

B2 Emissions Scenario: This scenario assumes a heterogeneous world with less rapid 

but more diverse technological change. The higher emphasis is given on community 

initiative and social innovation to find local rather than global solutions for economic, 

social and environmental sustainability. 
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2.1.2 Climate Models 

A full climate model consists of the Earth’s various components (atmosphere, 

hydrosphere, land surface, cryosphere, geosphere, and biosphere) along with the coupled 

interactions and feedback mechanisms in between each component. The climate 

transitions during the past, present and future is modeled based on the dynamics and 

interactions between the Earth’s components. Climate modeling started in the 1980’s 

with limited number of models, data, experiments and model accessibility. Global 

Climate Models (GCMs) are the only available tools to help understand the climate and 

the impacts of climate change at a global scale. GCMs run under the scenarios that 

consider the effect of GHGs and their projection into the future. A number of GCMs exist 

that simulate hundreds of constructed scenarios of past and future climate change. Table 

2.1 provides a list of the most robust GCMs along with the emission scenarios collected 

through the WCRP CMIP3 effort (Meehl et. al, 2007). The downscaled data for these 

GCMs can be accessed through the Lawrence Livermore National Laboratory (LLNL)  

Program for Climate Model Diagnosis and Intercomparison (PCMDI). The dataset 

consists of the runs from 3 scenarios: SRES B1 (low forcing, CO2 concentration ~ 550 

ppm by 2100); SRES A1B (medium forcing, CO2 concentration ~ 700 ppm by 2100); and 

SRES A2 (high forcing, CO2 concentration ~ 820 ppm by 2100). All GCMs model future 

climate based on the similar boundary conditions for atmosphere, ocean and land surface.  

GCMs are assumed to simulate temperature trend better than precipitation (Pierce et. al, 

2009). Some earlier projects (such as ENSEMBLE, PRUDENCE, NARCCAP) have 

produced ensemble results from multi-model GCMs to better understand the uncertainty 

in present and future estimates of extremes (Fowler et al, 2007). The ensemble of  
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Table 2.1 Model abbreviations, emission pathways, projection run and primary reference 
 

Modeling Group, 
Country 

WCRP 
CMIP3 

I.D. 

SRES 
A2 

runs 

SRES 
A1B 
runs 

SRES 
B1 

runs 

Primary 
Reference 

Bjerknes Centre for Climate 
Research 

BCCR-
BCM2.0 

1 1 1 
Furevik et 
al., 2003 

Canadian Centre for Climate 
Modeling & Analysis 

CGCM3.1 
(T47) 

1...5 1...5 1...5 
Flato and 
Boer, 2001 

Meteo-France / Centre 
National de R. 
Meteorologiques, France 

CNRM-
CM3 

1 1 1 
Salas-Melia 
et al., 2005 

CSIRO Atmospheric 
Research, Australia 

CSIRO-
Mk3.0 

1 1 1 
Gordon et 
al., 2002 

US Dept. of Commerce / 
NOAA / Geophysical Fluid 
Dynamics Laboratory, USA 

GFDL-
CM2.0 

1 1 1 
Delworth et 
al., 2006 

(Same as above) 
GFDL-
CM2.1 

1 1 1 
Delworth et 
al., 2006 

NASA / Goddard Institute for 
Space Studies, USA 

GISS-ER 1 2, 4 1 
Russell et 
al., 2000 

Institute for Numerical 
Mathematics, Russia 

INM-CM3.0 1 1 1 
Diansky and 
Volodin, 
2002 

Institut Pierre Simon Laplace, 
France 

IPSL-CM4 1 1 1 IPSL, 2005 

Center for Climate Sys. Res. 
(U. of Tokyo), Nat. I. for Env. 
Stu., and Frontier Res. C. for 
Global Change (JAMSTEC), 
Japan 

MIROC3.2 
(medres) 

1...3 1...3 1...3 
K-1 model 
developers, 
2004 

Met. Ins. of the U. of Bonn, 
Met. Research Institute of 
KMA 

ECHO-G 1...3 1...3 1...3 
Legutke and 
Voss, 1999 

Max Planck Institute for 
Meteorology, Germany 

ECHAM5/ 
MPI-OM 

1...3 1...3 1...3 
Jungclaus et 
al., 2006 

Meteorological Research 
Institute, Japan 

MRI-
CGCM2.3.2 

1...5 1...5 1...5 
Yukimoto et 
al., 2001 

National Center for 
Atmospheric Research, USA 

CCSM3 1...4 
1...3, 
5...7 

1...7 
Collins et 
al., 2006 

National Center for 
Atmospheric Research, USA 

PCM 1...4 1...4 2...3 
Washington 
et al., 2000 

Hadley Center for Climate 
Pred. and Res./ Met Office, 
UK 

UKMO-
HadCM3 

1 1 1 
Gordon et 
al., 2000 

(source: http://gdo-dcp.ucllnl.org/downscaled_cmip3_projections) 
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multiple GCMs is assumed to improve the model performance during simulation (Pierce 

et. al, 2009). There are various uncertainties (e.g. human induced changes, natural 

processes, interactions and feedback mechanism, cloud effects, oceanic overflow) in the 

prediction of future climate change and the degree of uncertainty is not known fully. 

Regardless, GCMs are the most current way to look, understand and predict the likely 

future climate change. 

2.1.3 Downscaling Techniques 

Most of the GCMs are designed to run globally at a coarser spatial resolution (e.g. 

2°, 5°) and longer time scale (such as monthly or yearly). The same resolution may not 

accurately represent the local climate and hydrological processes for the impact models 

operating at a smaller scale (McCabe and Ayers, 1989). Therefore, the coarser resolution 

model output must be downscaled to a finer resolution for local impact analysis. The 

various models used for downscaling utilize parameters such as sea level pressure and 

geosynthetic heights to predict temperature and precipitation (Cavazos and Hewitson, 

2002). No universal method of downscaling is available that is suitable for all situations; 

all methods available at present are still under study and testing (Xu, 1999). Downscaling 

can be applied to the spatial and temporal domains.  

2.1.3.1 Spatial Downscaling 

Spatial downscaling methods are developed to represent the local sub-grid scale 

features and dynamics such as convective cloud processes (Joubert and Hewitson, 1997). 

The spatial downscaling methods include simple interpolation, statistical downscaling 

and dynamical downscaling (Prudhomme et al, 2002). The interpolation method does not 

consider any correction for GCM output. The statistical methods establish an empirical 
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relationship between the predictor variable and the observed parameters based on the 

present climate observations (Xu, 1999). The simple statistical method includes the 

fitting of a linear regression model between the observed and modeled dataset. But the 

established physical relationship underlying the statistical relation is not without 

uncertainty and is therefore, difficult to justify in the climate change studies. Dynamic 

methods consider and solve the physical dynamics of the system. They are 

computationally expensive but they are assumed to produce more homogenous results 

than the statistical methods. They use the GCM output and higher resolution regional 

climate models (RCMs) embedded in the GCM, which runs regionally at a much smaller 

space scale (Fowler et al, 2007).  

The statistically downscaled climate projections data available through WCRPs 

CMIP3 multi-model dataset follows two major steps to spatially downscale the data from 

2º to 1/8º: Bias Correction and Spatial Disaggregation (BCSD). While comparing the 

hydrologic impacts, the BCSD method is considered to have the capabilities in 

comparable to other statistical and dynamical downscaling approaches (Wood et al., 

2002, 2004; Maurer and Hidalgo, 2008). The bias between the GCM monthly data 

(average temperature and precipitation) and the observed data is corrected using a 

quantile based mapping technique. The bias corrected temperature and precipitation are 

then interpolated into a finer grid by using additive anomalies for temperature and 

multiplicative factor for precipitation. 

2.1.3.2 Temporal Downscaling 

Temporal resolution is considered more important for shorter duration storms 

(Bronstert et al, 2002). The temporal downscaling methods include dynamic temporal 
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downscaling and weather generator techniques (Prudhomme et al, 2002). The dynamic 

temporal downscaling uses the atmospheric variables that are compatible with the 

resolution of GCM output to statistically downscale the data (e.g. monthly to daily). 

Among various types of statistical methods, the weather generator techniques use 

stochastic models to generate the daily data from the monthly data (Wilby et al, 1998). 

The stochastic rainfall generator technique considers the changes in model parameters 

and modeling of extreme rainfall events in the future. The stochastic model uses a 

resampling procedure (such as Monte Carlo) and generates random rain storms from the 

available data; however, the capacity of GCM is limited to ensure the effectiveness of 

this approach (Wilks, 1999; Cameron et al, 2000). The perturbation method is widely 

used by hydrologists for temporal downscaling due to its simplicity and lack of complete 

reliability on other sophisticated downscaling methods (Chiew et al, 1995; Arnell and 

Reynard, 1996; Tucker and Slingerland, 1997; Wood et al, 1997; Reynard et al, 2001; 

Loukas et al, 2002). It expresses the difference between modeled and observed data as a 

percentage change or scale factor. 

Prudhomme et al. (2003) applied three methods of temporal downscaling which 

are categorized as ‘proportional method’, ‘change in day’s method’ and ‘enhanced storm 

method’. The monthly percentage change in rainfall is applied to each day’s rainfall (only 

to those days with a rainfall total above a certain threshold value) in the ‘proportional 

method’. The number of rain days in each month is increased or decreased based on the 

monthly increase or decrease in rainfall in the ‘change in day’s method’. The monthly 

change in rainfall is applied to an enhanced storm in the ‘enhanced storm method’. The 

BCSD data available through WCRP CMIP3 multi-model dataset possess monthly 



www.manaraa.com

 22

average of precipitation and temperature. The monthly data are downscaled to daily data 

via random sampling and the bias correction and temporal downscaling (BCTD) 

technique (Wood et al, 2002, 2004). During the bias correction, temperatures are shifted 

by a certain quantity and precipitations are assigned a scaling factor similar to the BCSD 

method.  

Most of the climate change studies (including those listed in the current proposal), 

which perform at a regional scale and use the GCM output, have adopted a downscaling 

technique based on the hydrologic input data requirements (Bronstert et al, 1999; Miller 

et al, 1999; Widmann et al, 2002; Arnell et al, 2003; Zhang et al, 2005; Wetterhall et al, 

2005; Tripathi et al, 2006; Spak et al, 2007). Among the various types of downscaling 

methods, the application of RCMs and the statistical downscaling are considered the most 

important for hydroclimatic model applications (Bronstert et al, 2002). The major 

limitation of the statistical method is the assumption of stationary conditions for future 

climate. The bias present in historical GCM output are transferred to future simulations 

while applying the bias correction methods (Wood et al, 2004). The BCTD and 

perturbation method assume a change only in the future rainfall intensity. However, land 

use and other watershed characteristics along with the distribution and frequency of 

events remain unchanged. The coarser resolution from RCMs still need spatial and 

temporal downscaling to observe the impact at a local scale or for short duration events. 

The biases present in coarser scale GCM output are likely to get transferred to future 

climate predictions for all available downscaling methods. 



www.manaraa.com

 23

2.1.4 Assessment of Hydrological Impacts of Climate Change  

A proper understanding of climate change and its hydrological impacts at a 

regional scale are important for water resources management (Barontini et al, 2009). The 

common way of to assess future climate is based on historic climate change patterns. 

Temperature and precipitation are considered the most important parameters that 

influence hydrologic response of a watershed. The IPCC Third Assessment Report (TAR) 

has reported the likely decrease of rainfall in subtropics during the 21st century, but 

extreme precipitation events are likely to increase possibly contributing to severe 

flooding conditions (Cubasch et al, 2000). The occurrence and duration of extreme hot 

events are likely to increase, and the frequency and severity of extreme cold events are 

likely to decrease throughout the United States (Diffenbaugh et al, 2005).  

The impacts of climate change are considered to be region specific (Leung and 

Wigmosta, 1999). A significant shift in floods both in terms of magnitude and frequency 

is observed during climate change studies (Prudhomme et al., 2002). A significant change 

in annual runoff (almost 20 to 50%) is observed in the northeast, southeast and western 

coast of Australia by the year 2030 (Chiew et al, 1995). This same study reported a two 

times increase for wet and temperate areas to more than five times increase in arid 

regions. For 21 catchments in Great Britain, prior to 2050, the annual runoff shows an 

increase or decrease over 20% for the wettest or driest scenarios respectively (Arnell and 

Reynard, 1996). Another study identified 10% to 20% change in annual runoff across 

Southern Africa. The extreme storms show larger change in runoff when compared with 

the mean runoff (Arnell et al, 2003). The runoff for the head waters region of the Yellow 

River indicates a slight change in runoff before 2020, 10% decrease in the next 50 years, 
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and more than 5% decrease per year after 2050 due to greater enhancement of 

temperature (Li et al, 2008). The impacts of climate change on Belgian catchments are 

found positive or negative depending on the catchment characteristics and climate change 

scenarios. Most of the scenarios show an increase in flood frequency during winter 

months and for catchments with prevailing surface runoff (Gellens and Roulin, 1998). 

Except for some regions which show a decrease, the frequency of extreme events are 

increased through most of the tropics in south central Africa (Walsh and Pittock, 1998). 

Climate change has resulted in an increase of the magnitude and frequency of 

flood events in southeastern Australia and the U.K. (Schreider et al., 2000; Reynard et al, 

2001; Prudhomme et al, 2003). The peak flow depends on extreme precipitation and land 

use, with more significant effect of the land cover on increasing flood pattern (Reynard et 

al, 2001). Strzepek and Yates (1997) has reported a runoff reduction of more than 23% in 

Central and Eastern Europe for most of the future climate scenarios; the GISS scenario 

resulted in almost a 12% increase in runoff. Middelkoop et al. (2001) has reported a rise 

in winter flow due to intensified snow melt and higher precipitation, and reduction in 

summer flow due to reduced snow storage and higher evapo-transpiration in the Rhine 

basin. The increase in the probability of flooding in the Rhine and Meuse basins are 

attributed to an increase in the total rainfall and intensity (Pfister et al, 2004). A reduction 

in snowpack of nearly 60% and a shift in seasonal streamflow observed at the American 

River are attributed to less snowfall and more rainfall in warmer climate conditions 

(Leung and Wigmosta, 1999). Several studies are carried out in other regions of the world 

which relate the hydrological impacts to climate change (Bates et al, 1994; Aizen et al, 

1997; Arnell, 1999; Bronstert et al, 1999; Hamlet and Lettenmaier, 1999; Miller et al, 
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1999; Braun et al, 2000; Arora and Boer, 2001; Bergstrom et al., 2001; Loukas et al, 

2002; Jian and Shuo, 2006; Kay et al, 2006; Hayhoe et al, 2007; Liu et al, 2007; Minville 

et al, 2008; Barontini et al 2009; Gerbaux et al, 2009). Most of these studies have 

demonstrated similar increasing or decreasing trends, whatever the case may be, across a 

wide variety of climate change scenarios. The obvious discrepancy between these studies 

is in the magnitude of the change, not the direction.  

2.1.4.1 Hydro-Climatic Change in the Western U.S. 

The natural hydroclimatic variability in the western U.S. is most often defined as 

a function of the ENSO and PDO (Mantua et al, 1997). The major changes are observed 

in terms of higher or lower temperature and precipitation than the normal conditions 

(Hamlet and Lettenmaier, 1999). ENSO and PDO are also interconnected with each 

other. When both the climate indicators are in same phase, there is a strong possibility of 

higher or lower streamflow anomalies (Hamlet and Lettenmaier, 1998). The regional 

warming and changes in atmospheric circulation of the North Pacific are also related 

(Dettinger and Cayan 1995). Most of the studies (from 1991 to 2000) that relate to natural 

variability of the Pacific climate conditions and its effect on hydroclimatology of North 

America are documented by Hidalgo and Dracup (2003). Other studies also verified the 

effects of natural variability on the hydroclimatology of North America (e.g. Chao et al, 

2000; Barlow et al., 2001; Papineu, 2001; Gutzler et al, 2002; Hidalgo and Dracup, 2003; 

Newmann et al, 2003; Westerling and Swetnam 2003; Beebee and Manga, 2004; 

Schoennagel et al, 2005; Yu and Zwiers, 2007; Tootle and Piechota 2006; Tootle et al, 

2008; Timilsena et al, 2009; Aziz et al, 2010; Lamb et al, 2010).  
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The trend of declining snowpack over the western U.S. is primarily driven by an 

increase in temperature rather than change in precipitation (Mote et al, 2005; Hamlet et 

al, 2005; Mote, 2006; Maurer et al, 2007; Miller and Piechota, 2008). A study of Jan-

March (JFM) minimum surface temperatures, precipitation, ENSO, and PDO data 

confirmed the anthropogenically forced temperature change over the western United 

States (Pierce et al, 2009). The winter snowpack acts as a reservoir which stores more 

water than is stored by man made reservoirs in most of the western United States (Mote 

et al, 2005). The accumulated snowpack during the winter storms gradually melts and 

serves as the major source of water supply during the dry periods. The expected increase 

in the greenhouse gas induced warming in the coming century could contribute 

significantly on the decline of snowpack in the west (Pierce et al, 2008).  

Some studies have utilized the detection and attribution analysis (D&A) technique 

to study the human induced changes in hydrology along with temperature variability in 

the mountain ranges, and the shifts in streamflow timing as a result of climate change 

impacts in the western United States (Barnett et al, 2008; Bonfils et al., 2008; Pierce et al, 

2008; Hidalgo et al, 2009). These studies also found the effects of anthropogenic climate 

forcing to dominate over the natural internal climate variability from the recent historical 

record. Barnett et al. (2008) has identified that almost 60% of the climate related change 

(e.g. snowpack reduction) during the period of 1950-1999 is attributed to human induced 

changes. Pierce et al. (2008) has identified that the reduction in April 1 snow water 

equivalent (SWE) to precipitation ratio is higher for anthropogenic climate simulations 

rather than the natural internal climate variability alone. Hidalgo et al. (2009) has 

identified that the shift in the timing of spring snowmelt (streamflow) along the 
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California region, the Upper Colorado River basin and the Columbia River basin (since 

1950) is also attributed to increasing anthropogenic activities. The linear regression 

between SWE, temperature and precipitation shows an increase in the SWE (during 

1930-1950) which is attributed to the increase in precipitation; the reduction in the SWE 

since 1950’s is attributed to regional warming in the western United States (Mote, 2003, 

2006). These studies indicated a serious water crisis in the western U.S. in future decades. 

 Cayan et al. (2006) has showed an increase in temperature (2 to 6 ºC) in 

California during the period of 2000 to 2100. The relatively small change in temperature 

is shown to have negative impacts on the state’s water supply, hydroelectric power, 

agriculture, recreation, and ecosystems. Groisman et al. (2004) reported a reduction in the 

spring and summer snowpack during the period of 1972-92. A decrease in April 1 SWE 

was observed (except in southern Sierra Nevada) during the period of 1950-2000 (Mote 

et al, 2005). As an exception, the higher precipitation overcomes the warming effect in 

the Southwest, thus leading to higher SWE (Mote et. al, 2005; Udall and Bates, 2007). 

The trend of higher rainfall rather than snow in terms of total precipitation is observed 

over the period of 1949-2004. This attributed to a decrease in total snowpack in the 

region (Knowles et al., 2006). 

 The observed daily records (from 1950-1999) showed more precipitation for 

stations located on the south of Wyoming and less for stations located on the north 

(Regonda et. al, 2005). An increase in precipitation (almost 6.3%) is observed over 

western Washington, Orlando and British Columbia, during the period of 1920-2000. A 

decreasing precipitation trend of 4.8% is observed during 1950-2000 for the same regions 

(Hamlet et al., 2005). Similar earlier studies also showed the hydroclimatic changes in the 
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western U.S. in terms of declining snowpack, lower snow water content, earlier 

snowmelt, and shift in spring runoff timing (Roos 1987, 1991; Wahl 1992; Aguado et al. 

1992; Pupacko, 1993; Dettinger and Cayan 1995; Leung et al, 2004; Vanrheenen et al, 

2004; Stewart et al, 2005). Although the impacts are visible, no significant changes in 

annual streamflow volume was observed during the past 50 years; this indicates the 

regional warming induced changes mainly contributed to the seasonal distribution of 

streamflow (Hidalgo et al., 2009). 

2.1.4.2 Application of GCMs for Hydrologic Assessment 

GCM data was initially incorporated by Environmental Protection Agency (EPA) 

in 1984 to study the impacts of climate change on the regions of North America (Gleick, 

1986). However, climate models do not provide short term time scale projections needed 

for hydrologic modeling. The coarser resolution data obtained from climate models are 

downscaled to desired spatial and temporal scale to observe hydrologic impacts due to 

climate change. The climate change impact studies based on GCM output are mainly 

oriented to areas where higher resolution data are available. At present, this means most 

of these studies are focused in the regions of North America. The two common steps 

adopted by most of the studies related to hydrological impacts of climate change include: 

• Climate modeling based on projected climate scenarios (IPCC scenarios); and  

• Perform simulation under present and future conditions by using climate model 

output and a suitable hydrological model.  

 Past studies have utilized a number of GCMs and climate projections to study the 

impacts of climate change. Based on the multi-models future climate projections, the dry 

subtropics are likely to dry further while the wet, higher latitude regions are likely to be 
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wetter in the future (Held and Sodden, 2006). A study over the continental U.S. based on 

18 CMIP models has showed the normalized annual mean temperature at more than one; 

and less than one for normalized mean precipitation (Covey et al, 2003). A study on the 

large River basins throughout the U.S. based on 24 climate projections has showed an 

increase in runoff of 5-10% in the Ohio River basin and 2-5% in the upper Mississippi 

River during the period of 2041-2060. No significant increase in runoff is observed in the 

Great Lakes region during that period (Milly et al, 2005). The simulation based on 19 

climate models participating in IPCC (AR4) report has resulted in more arid southwestern 

U.S. in 21st century (Seager et al, 2007). 

 The application of a number of GCMs, RCMs and multiple projections over the 

western U.S. shows an increase in the future temperature pattern. Precipitation shows an 

increase or decrease pattern based on the type of models, regions and seasons. The 

Pacific Northwest (PNW) is likely to have somewhat wetter winters and dryer summers 

(Hamlet et al, 2005). Giorgi et al (1994) has reported an increase in temperature and 

precipitation (except for a period of April to Oct in southwestern U.S.) under doubled 

CO2 concentration levels. An increase in temperature (0-4.5ºC) and an increase or 

decrease in precipitation is observed at Washington, Oregon, Idaho and Montana (Leung 

and Ghan, 1999). An increase in temperature and precipitation is observed for the 

western U.S., except for spring and summer precipitation which shows both increasing 

and decreasing patterns (Kim et al., 2002). Snyder et al. (2002) and Coquard et al. (2004) 

also confirmed the positive response for temperature for all seasons, and positive or 

negative response for precipitation for different regions. The existing research 

demonstrates how difficult it is to predict the precipitation response in the western United 
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States. Precipitation data show increasing or decreasing patterns based on results from 

different climate models applied to the same region. McGuffie (1999) pointed out that 

careful consideration is needed when drawing conclusions from a single GCM output, 

since the observed changes are very likely prone to errors. 

2.1.4.3 Effect of GCMs Resolution in Impact Studies 

Based on various climate change studies performed using GCMs, no single 

climate models are considered the best for all climate variables. The simulated results 

showed different levels of success from using different models and parameters. Some 

studies have found no significant difference in the model results when altering the model 

resolution, performance, quality or projections (Lambert and Boer, 2001; Pierce et al, 

2009). Other studies have shown the GCM results in close agreement with observed data 

for higher resolution simulation in compared to coarser resolution simulation (Giorgi et 

al, 1998; Iorio et al, 2004). Due to the lack of high quality data, it has become difficult to 

simulate the seasonal cycle amplitude of precipitation in the western United States 

(Coquard et al, 2004; Pierce et al, 2009). In a study by Mearns et al. (1995), the rainfall 

intensity is simulated accurately while the mean precipitation is over estimated by GCM 

in the northeast U.S. The frequency and magnitude of extreme events are not simulated 

quite well using coarser resolution models and sometimes even with higher resolution 

models (Gordon et al, 1992; Giorgi et al, 1998; Iorio et al, 2004). Coarser resolution 

models consider the average rainfall in small catchments which diminishes the 

importance of extreme events. The natural climate variability (e.g. ENSO, PDO) are also 

not represented well in coarser resolution GCMs. More descriptions on the sensitivity of 
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the simulated response of climate change to model resolution can be found in Duffy et al. 

(2003) and Govindasamy et al. (2003).  

The results also vary for studies which incorporate both higher resolution regional 

climate models (RCMs) and coarser GCMs. The mean precipitation for the U.S. is over 

predicted by GCMs while it’s under predicted (almost 20%) by MM4 RCM (Giorgi et al., 

1994). The spatial and temporal biases present in the coarser resolution models are 

reduced with the use of higher resolution models and provide more detailed, accurate and 

realistic simulations (Giorgi et al. 1994, 1998; Mearns et al. 1995). As discussed in Iorio 

et al (2004), the coarser resolution models depend more on the semi-empirical 

parameterizations which lacks higher quality output of simulated precipitation. The 

ability to simulate convective storms and extreme precipitation events mainly occurring 

in summer, which attributes to larger biases in the model results and increased reliance on 

parameterizations, are also improved by higher resolution simulation. This occurs despite 

the fact that the model relies less on these parameterization mechanisms at higher 

resolution. The extreme precipitation events are more accurately represented and 

simulated by the super parameterization model “SP-CAM” in which the higher resolution 

cloud system resolving model (CSRM) are embedded within the GCM.   

2.1.4.4 Extreme Precipitation Events 

 The frequency and intensity of heavy precipitation events have increased in many 

regions during the past 50 years (Frich et al, 2002; IPCC, 2007). The increase in the 

precipitation intensity under the warmer climate is supported by various studies (Cubasch 

et al, 2001; Palmer and Ra¨isa¨nen, 2002; Semenov and Bengtsson, 2002; Voss et al, 

2002; Milly et al, 2002; Watterson and Dix, 2003; Wehner, 2004; Meehl et al, 2005; 
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Ra¨isa¨nen, 2005; Goswami et al, 2006). The anticipated increase in convective activity 

due to increased radiative energy under enhanced GHG conditions could result in an 

increase of the intensity and frequency of heavy rainfall events (Noda and Tokioka, 1989; 

Gordon et al., 1992). Along with the increase in extreme events, the uncertainties for 

estimating the average recurrence interval for more extreme flood events are expected to 

increase under changed climatic conditions (Mearns et al., 1984; Schreider et al, 2000). 

The analysis of extreme rainfall events and their variability with the use of GCMs in the 

past century have simulated larger changes in the frequency of extreme daily 

precipitation (e.g. Mearns et al, 1990; Gordon et al. 1992; Cubasch et al, 1995; Mearns et 

al, 1995; Jones et al, 1997; Hennessy et al, 1997; Zwiers and Kharin, 1998; McGuffie et 

al, 1999; Kharin and Zwiers, 2000). However the available resolution of GCMs is not 

considered well enough to draw a conclusion on extreme events in most of these studies.  

The evaluation of extreme events requires the use of RCMs, high resolution 

GCMs, or downscaling of data to a smaller time scale (Brown and Katz, 1995). Although 

RCMs possess restricted boundary conditions, they can simulate local fine-scale feedback 

processes which were not possible in the past (Maurer et al, 2007). The high resolution 

simulation improves the analysis and accuracy of the GCM results (Kim et al, 2002). 

Including these recommendations, several studies (most of which are from Europe) have 

been done using multi-models, multi-scenarios, or both along with high resolution 

simulations to address the various uncertainties in the impact studies of extreme 

precipitation events (e.g. McGuffie et al, 1999; Durman et al, 2001; Jones and Reid, 

2001; Ra¨isa¨nen and Joelsson, 2001; Prudhomme et al, 2002; Huntingford et al., 2003; 

Watterson and Dix, 2003; Ekstro¨m et al, 2005; Fowler et al, 2005; Frei et al, 2006; 



www.manaraa.com

 33

Tebaldi et al, 2006; Beniston et al, 2007; Buonomo et al, 2007; Fowler et al, 2007; 

Dankers and Feyen, 2009; Dankers et al, 2009; Fowler and Ekstro¨m, 2009; Kyselý and 

Beranová, 2009; Mailhot et al, 2010).  

The summer is expected to dry further, while an increase in intensity and decrease 

in return period for both shorter and longer duration extreme precipitation events is 

expected in most areas based on the results from climate models (Christensen and 

Christensen, 2003; Fowler and Kilsby, 2003a).The projection of changes in extreme 

precipitation has shown the greatest increase in precipitation intensity for extreme short 

duration events (Ra¨isa¨nen and Joelsson, 2001; Buonomo et al, 2007). There are, 

however, some uncertainties while analyzing the results at a regional scale. Some areas 

showed decrease in total precipitation in warmer climates (May et al, 2002; Voss et al, 

2002); results of some models are not statistically significant in some regions, while, in 

other areas, they are not simulated properly (Huntingford et al, 2003; Kiktev et al, 2003).  

2.1.5 Uncertainties in Climate Change Studies 

Existing research based on assumption of a stationary climate are not supported at 

present due to the occurrence of significant changes in the Earth’s hydrological cycle 

over time. These changes occur due to natural variability, human activities and regional 

warming (Bonfils et al, 2008). The answer on “Will global warming be ‘warm and wet’ 

or ‘warm and dry’?” is still inconclusive. At this point, any of the above situations could 

occur (Hamlet et al, 2005). The available GCMs possess different abilities to model 

current and future climate trends. Climate change study results vary for different 

catchment scales and climate scenarios. Most of the studies assume that good climate 

models can reproduce present climate. On the other hand, Coquard et al (2004) has 
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reported that better models do not necessarily provide improved predictions of 

precipitation, and to some extent, temperature as a response to increased CO2 

concentration. Uncertainty in the development of future climate conditions is also a big 

issue (Braun et al, 2000). The uncertainty arises from various sources such as the method 

of downscaling, incorporating natural variability in the developed models, the number of 

GCMs available, GCM inter-model variability, choice of SRES scenarios, and the 

selection, calibration and validation of a hydrologic model for a future climate conditions 

(Prudhomme et al, 2003; Minville et al, 2008). The model simulated results are 

considered comparable with observational data, even though it does not capture all the 

processes in the Earth’s system (Lambert and Boer, 2001).  

Efforts should be focused on reducing uncertainty for better predictions. A 

number of GCMs and scenarios are used by several studies to reduce the uncertainty to 

some extent (Merritt et al, 2006; Maurer, 2007; Vicuna et al, 2007). A minimum of three 

different GCMs are considered as the useful ensemble size, when analyzing the changes 

in precipitation extremes (Kendon et al, 2008). There is a considerable difference 

between the results simulated with different models. The mean model result, which is 

obtained by averaging all the ensemble model results, is considered to provide the best 

comparison to observations for climatological mean fields (Lambert and Boer, 2001; 

Coquard et al, 2004). Various studies have suggested the non-uniform weighting of 

model results due to different capacity of each model to simulate climate conditions 

(Giorgi and Mearns, 2003; Tebaldi et al, 2004, 2005; Lopez et al, 2006). The future 

hydrologic impacts such as percent increase or decrease in streamflow are also compared 

with respect to a common baseline period for different models. The Bayesian approach of 
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probabilistic analysis of ensemble multi-model multi-scenario results, and the generation 

of probability density functions (pdfs) of change are considered to better represent the 

uncertainty of climate variability (Tebaldi et al, 2004, 2005; Lopez et al, 2006). Seasonal 

analysis, calculation of mean, median and percentiles, and the analysis of variance 

(ANOVA) are suggested by some other studies as a way to quantify model uncertainty 

(e.g. Fowler et al, 2007; Seager et al, 2007; Pierce et al, 2008; Dankers and Feyen, 2009; 

Fowler and Ekstro¨m, 2009). 

There are several criteria (such as coefficient of determination, r2; Nash-Sutcliffe 

efficiency, E; index of agreement, d; Nash-Sutcliffe efficiency with logarithmic values, ln 

E; modified forms of E and d, relative efficiency criteria Erel and drel) that can be used to 

evaluate the performance of a hydrologic model (Krause et al, 2005). It is possible that a 

precisely calibrated model parameter at present may not perform well when predicting 

future conditions. The use of the same optimized parameter for the past and the future 

also ignores the potential feedback between the surface and the atmospheric processes 

(Chiew et al, 1995).The use of more physically based hydrologic models including the 

multi-model, multi-scenario approach, and the probabilistic analysis could quantify the 

uncertainty to some extent and provide the likelihood of occurrence of future hydrologic 

changes (Georgakakos et al., 2004; Minville et al, 2008). 

The integrated climate hydrology model is required to quantitatively access the 

impacts of climate change on runoff (Bronstert et al, 2002). Most of the past studies 

utilized GCM output and a suitable hydrologic model to see the impacts of climate 

change on runoff response of a basin (e.g. Chiew et. al, 1995; Gellens and Roulin, 1998; 

Cameron et al, 2000; Bergstrom et al., 2001; Middelkoop et al, 2001; Reynard et al, 
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2001; Li et al, 2008). All information related to hydrologic variations, soil variations, 

artificial storage, snowfall, snowmelt, and climate change should be included for a 

realistic regional hydrologic evaluation. Additionally the availability and accuracy of 

data, the inherent accuracy, flexibility, and compatibility (with the existing GCMs) of the 

hydrologic model represent major criteria for evaluating the applicability of hydrologic 

model to climate change studies (Gleick, 1986). 

 

2.2 Weather Modification (Cloud Seeding) 

2.2.1 Concepts on Weather Modification 

Weather Modification (WM) is also called an ‘atmospheric water resources 

management technology’, or ‘cloud seeding’, or ‘precipitation enhancement’ project. 

WM represents an artificial stimulation of clouds to increase natural rainfall (snowfall) or 

hail suppression. Runoff augmentation is an alternative to meet the need of increasing 

water demand. Cloud condensation nuclei, which are present as a particulate matter in the 

atmosphere, are not always sufficient for natural precipitation. An introduction of ice 

nuclei (e.g. silver iodide (AgI), dry ice, liquid propane, salt compounds) in the cloud 

increases the freezing of the super cooled liquid at a higher temperature than natural and 

forms precipitation (WMA, 2005). Super cooled liquid water attaches to the AgI crystals 

and freeze to form droplets of super cooled liquid water. These droplets form snow 

crystals and fall as snow flakes. During this process, heat is released into the atmosphere 

which boosts updrafts and pulls more moist air into the cloud for more precipitation. 

Static and dynamic mode represents two modes of cloud seeding. The scientific basis for 

static mode is an increase in precipitation efficiency. The scientific basis for dynamic 
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mode is to enhance cloud development to increase the productivity of clouds (Kauser et 

al, 2008). Two types of cloud seeding are hygroscopic seeding (warm or mixed phase 

clouds) and glaciogenic seeding (cold based and continental). Ice producing materials 

(e.g. silver iodide, dry ice) or large hygroscopic particles (e.g. salt powder) is dispersed 

into the cloud during glaciogenic and hygroscopic seeding respectively. Cloud seeding is 

done by using ground based cloud seeding generators or special equipped aircraft. 

Depending on the type of cloud seeded and seeding delivery method, seeding effect takes 

place from immediate to almost 30 minutes (NAIWMC, 2010). Timing and targeting are 

two critical determinants in cloud seeding. It could decrease rainfall if the seeding time 

and place are not suitable (Kauser et al, 2008).  

Silver Iodide (AgI) is a major component used for cloud seeding. Past studies 

have documented the release concentration of AgI aerosols through snowpack, rainwater, 

soil and lake sediment samples to be very low to cause any environmental and human 

health impacts (Cooper & Jolly 1970; Dennis, 1980; Warburton et al, 1996; McGurty, 

1999; Sanchez et al, 1999; Tsiouris et al. 2002a, 2002b; ASCE, 2006; Williams & 

Denholm 2009; WMA, 2009). Eisler (1996) reported that the amount of AgI aerosols 

released by cloud seeding activities in 1978 was almost 0.1% of total release of silver in 

the environment; the same release amount is considered at present in U.S. and Canada. 

AgI is recommended for use because it can produce higher number of ice crystal seeds to 

produce more ice crystals (1015 ice forming nuclei per gram of AgI expended); it is 

considered water insoluble (<10-9 g of Ag per g of water), and it is not freely bioavailable 

to the environment (ASCE 2004, 2006; WMA, 2009).   
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2.2.2 Previous Studies on Weather Modification 

WM programs have existed since the early 1950s (NRC, 2003). Most of these 

activities have been in operation in the western parts of the U.S., Canada and some other 

regions of the world (e.g. China, Thailand). The World Meteorological Organization 

(WMO, 2000) reported about 74 operational cloud seeding projects all over the world in 

the year 2000. The National Oceanic and Atmospheric Administration (NOAA) 

identified almost 66 projects in the semi arid western U.S. by the year 2001; some 

projects have been running for more than 50 years (NRC, 2003; Ryan et al, 2005). The 

WM programs are in operation for water supply enhancement in western U.S. and hail 

suppression in the High Plains of U.S. and Canada (Cotton, 2007). The production of 

additional supply through cloud seeding is inexpensive in compared to building of new 

infrastructures (Grant, 1983; Breed, 2008). The WM programs are considered as “cost 

benefit and environmental friendly” technology, which are also viewed as a long-term 

water management tool (WWDC, 2005; Kauser et al, 2008). 

A properly designed cloud seeding project can increase precipitation by more than 

10% (AMS, 1998; WMA, 2005). WM programs are assumed to be effective in target 

areas with no adverse effects on surrounding areas. A feasibility study of operational 

cloud seeding program in the Salt River and the Wyoming ranges in Wyoming has 

reported an average increase of 10% in November through March precipitation (Griffith 

et al, 2007). This project also recommended the months of November to March for cloud 

seeding since a majority of seedable storms are present in this period. Since 1972, 

glaciogenic seeding of winter orographic clouds is in practice in the Colorado River 

Basin. The projects are in operation to prevent water shortage, reduce the impact of 
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drought, and enhance reservoir storage (Ryan et al, 2005; Cotton, 2007). The headwater 

regions of Colorado River Basin for wintertime cloud seeding include the Central 

Colorado Rockies, the Vail and Upper Arkanas region, the Grand Mesa, the San Juan 

(Delores) River Basins, the Gunnison Basin, and the Southern ranges of Wyoming. Cloud 

seeding is supposed to contribute from 0.8 to 1.8 million acre-feet (MAF) of water for the 

Colorado River Basin with a favorable benefit cost ratio for the program (Ryan et al, 

2005; Griffith and Solak, 2006). The WYMPP is planned to run from 15 November to 31 

March, for five consecutive years, starting from 2005/06 season (Boe, 2008). Around 250 

storm events are estimated in the target areas to attain a 15% increase in precipitation 

(Breed, 2008). 

Higher production of hydroelectric power at a cheaper cost, through increase in 

snowpack, is the major objective of the cloud seeding projects which are operating in the 

Upper Snake River Basin, Idaho. An increase in snowpack of about 7 % and a higher 

reservoir level is already observed in the Basin (Barker, 2009). Some studies identified 

higher agricultural yield and hail damage reduction in North Dakota (Smith et al, 1992b; 

Smith et al., 1997; Pandil, 2009). Out of 11 operational cloud seeding programs in the 

watersheds of Sierra Nevada, the statistical evaluation showed positive effect for 6 

watersheds on the western side of Sierra Nevada Mountain Range (Silverman, 2010). 

In terms of monetary evaluation, KWO (2001) estimated a cost in the range of $1 

to $15 per AF of additional runoff from snowpack in Kansas. Utah Department of 

Natural Resources (2005) has reported an increase in between 2 to 18 percent in April 1 

snowpack water content due to WM projects from Utah. This same project has estimated 

an annual runoff increase (~ 7% of the study area) at a cost less than $2.0 per AF. The 
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recorded benefit cost ratio, which also includes the applications of increased runoff from 

the WM projects, ranges from 20 to 40 for most of the WM projects (Sell and Leistritz, 

1998; Griffith and Solak, 1999; Stauffer and Williams, 2000; ASCE, 2006; Kauser et al, 

2008). WM programs (hygroscopic or glaciogenic cloud seeding) that were implemented 

in different regions and evaluated for rainfall enhancement have shown increases in 

rainfall  in most cases (Kethley, 1970; Kahan, 1972; Osborn, 1972; Seely and 

DeCoursey, 1975; Zovne and Koelliker, 1979; Johnson, 1985; Rosenfeld and Woodley, 

1989,1993; Holroyd et al, 1995; Mather et al, 1997; Bruintjes, 1999; Medina, 2000; 

Murty et al, 2000; Silverman and Sukarnjanaset, 2000; Terblanche et al, 2000; Fowler et 

al, 2001; Stauffer, 2001; Griffith et al, 2005a,2005b; Hunter et al, 2005; Super and 

Heimbach, 2005; Heggli et al, 2007; Huggins, 2007; Hunter, 2007; Kang and Ramirez, 

2007; Huggins et al., 2008; Woodley and Rosenfeld, 2008; Griffith et al, 2009; Levin, 

2009; Chen and Xiao, 2010). 

Some cloud seeding projects showed controversial results for different categories 

of rainfall and weather conditions (Sharon et al, 2008; Levin et al, 2010). Despite the 

increase in precipitation, the cloud seeding contributed less on the days with higher 

natural rainfall and made the program insignificant. During the drought condition, few 

clouds are available for seeding; during the rainfall above normal conditions, seeding is 

not effective as plenty of rain is available (WWDC, 2010). The decrease in precipitation 

is also attributed to physical factors such as increasing urban and industrial air pollution 

(Givati and Rosenfeld, 2004). Some related studies on cloud seeding are listed here 

(Hastay and Gladwell, 1969; Benjamini and Harpez, 1986; Zvi, 1988; Smith et al, 1992a; 
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Zvi and Langerman, 1993; Bigg, 1997; Woodley et al, 2000; Yin et al, 2000, 2001; Segal 

et al, 2004; Gao et al, 2006; Curie et al, 2007; Rasch et al, 2009; Drofa et al, 2010). 

2.2.3 Uncertainties and Evaluation Criteria 

Most of the past and ongoing researches have mainly focused on winter WM 

(winter seeding) for snowpack augmentation. The major goal is to increase soil moisture 

level and reservoir storage during dry periods. Research funding on cloud seeding has 

been limited over past years due to the lack of proper evidence on the positive effects of 

cloud seeding (NRC, 2003). The changes in rainfall and snowfall are not accurately 

verified as changes due to WM programs alone. Various uncertainties such as natural 

continuous variability of rainfall and runoff, accurate measurement of climate variables, 

critical questions related to the microphysical processes leading to precipitation, need of 

randomize and replicate experiments, adverse effects on underlying areas, bias in model 

results, evaluation of benefits, complications due to environmental factors, restrict while 

drawing conclusions to verify seeding effects scientifically. WM programs to augment 

rainfall and snowpack are still operating based on cost versus probabilistic benefit 

analysis. 

The inclusion of uncertainties makes an evaluation of effectiveness of WM 

programs more challenging. Evaluation is based on data from SNOTEL target sites 

(precipitation and runoff), measurement of super cooled liquid water, crop yield, and 

regression equations for precipitation and snow water content (Warburton et al, 1995; 

Breed, 2008; Griffith et al, 2007). A long period of data is required to establish this type 

of relation. Snow trace-chemistry analysis, objective radar based analysis, satellite data 

evaluation, and numerical modelings are some of the recently developed methods to 
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evaluate effects of cloud seeding (NAIWMC, 2010). Snow trace-chemistry analysis 

confirms effective seeding based on concentration of chemicals, and silver to indium 

ratio in monitored snow samples over target area (Heggli et al, 2007). The Colorado 

White Paper has categorized the evaluation methods into three types: statistical, physical, 

and modeling (Griffith and Solak, 2006). A ‘Target’ group of seeded storms is compared 

with a ‘Control’ group of unseeded storms in the conventional statistical method or “time 

of origin analysis” (Terblanche et al, 2000).  

Some studies used quartiles, ‘p’ values and confidence intervals (for seeded and 

control storms) to evaluate cloud seeding program (Terblanche et al, 2000). This same 

project compared routine rainfall measurements for the month of operational seeding 

(March 1995) and the rainy season (Oct 1995 to March 1996). Other studies have used 

regression models based on daily rainfall and ‘Double Ratio (DR)’ (ratio of rainfall in 

target area to control area) on seeded and unseeded days (Zvi and Fanar, 1997; Sharon et 

al, 2008; Morrison et al, 2009).  

Strong physical evidences as well as highly significant statistical evidences are 

required to prove the effects of cloud seeding scientifically (Cotton, 2008). Although 

effectiveness and great successes (precipitation increase in the range of 20%) have been 

claimed for WM programs, the results are controversial due to lack of scientific evidence 

to demonstrate these claims (Silverman, 2001, 2003). Uncertainties due to downwind 

effects and natural variability of clouds, role of aerosols, identification of right cloud, 

wind effects e.t.c. are still inconclusive (Cotton, 2008). Difficulty still remains while 

selecting the region for cloud seeding, efficient targeting, and dispersing of seeding 

material (Breed, 2008). The Weather Modification Association (WMA) also supports 
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recommendations for randomized and statistical experiments (at least 10% of seeding 

events); a national program which includes exploratory and confirmatory field studies; 

and development of new statistical methods, to achieve statistically significant results and 

reduce uncertainties on effectiveness of WM programs (Ryan et al, 2005). Additionally, 

use of meso-scale models; high quality observational (radar based) dataset; more 

sophisticated targeting models to account for local variations in wind conditions; 

assignment of common time base and decision time; and other advanced technologies, 

are recommended for identification of highly seedable storms in target area and better 

evaluation of WM programs (Terblanche et al, 2000). 
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CHAPTER 3  

MODELED STREAMFLOW RESPONSE UNDER WEATHER MODIFICATION IN 

THE NORTH PLATTE WATERSHED, WYOMING 

3.1 Introduction 

Snowpack augmentation and runoff enhancement are considered to be an integral 

part of regional water management in many arid and semi arid regions. Longer droughts 

in arid regions have necessitated weather modification (WM), or cloud seeding programs. 

The major goal of WM program is to prevent water shortage, reduce the impact of 

drought, and enhance reservoir storage, by utilizing clouds in the sky.  

The wintertime cloud seeding is considered scientifically most efficient and 

credible for larger scale WM programs (Hunter, 2007). It has been reported that a 

properly designed and implemented WM programs could increase snowpack in the range 

of 5% to 15% (AMS, 1998; WMA, 2005). Studies have identified an increase of 6% in 

agricultural wheat production and a decrease in crop hail loss of 45% in North Dakota 

(Smith et al, 1992b, 1997; Pandil, 2009). An increase in snowpack of about 7 % and a 

higher reservoir level has been observed in the operational cloud seeding project in the 

Upper Snake River Basin, Idaho (Barker, 2009). The amount of rainfall was more than 

doubled in a silver iodide based cloud seeding project in Texas (Rosenfeld and Woodley, 

1989). WM programs that were implemented in different regions and evaluated for 

rainfall enhancement have shown increases in rainfall in most cases (Kethley, 1970; 

Kahan, 1972; Osborn, 1972; Seely and DeCoursey, 1975; Zovne and Koelliker, 1979; 

Johnson, 1985; Rosenfeld and Woodley, 1989,1993; Holroyd et al, 1995; Mather et al, 

1997; Bruintjes, 1999; Medina, 2000; Murty et al, 2000; Silverman and Sukarnjanaset, 
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2000; Terblanche et al, 2000; Fowler et al, 2001; Stauffer, 2001; Griffith et al, 

2005a,2005b;  Hunter et al, 2005; Ryan et al, 2005; Super and Heimbach, 2005; Curie et 

al, 2007; Heggli et al, 2007; Huggins, 2007; Hunter, 2007; Kang and Ramirez, 2007; 

Huggins et al., 2008; Woodley and Rosenfeld, 2008; Griffith et al, 2009; Levin, 2009; 

Chen and Xiao, 2010). WM programs are considered to be ‘cost effective and 

environmental friendly’ technology (WWDC, 2005; Kauser et al, 2008). The production 

of additional water supply through cloud seeding is considered inexpensive compared to 

building new infrastructure (Grant, 1983; Breed, 2008). KWO (2001) estimated the cost 

in the range of $1 to $15 per AF of additional runoff from snowpack in Kansas. Utah 

Department of Natural Resources (2005) has estimated the cost to be approximately $2.0 

per AF of additional runoff for the combined projects in Utah. 

WM programs are claimed effective with an increase in precipitation in the range 

of 5% to 20%. Verifying the seeding effects is difficult; however, WM programs are 

justified based on cost versus probabilistic benefit analysis (NRC, 2003). The recorded 

benefit cost ratio, which also includes the applications of increased runoff from the WM 

projects, ranges from 20 to 40 for most of the WM projects (Sell and Leistritz, 1998; 

Griffith and Solak, 1999; Stauffer and Williams, 2000; ASCE, 2006; Kauser et al, 2008). 

With increasing water demand, WM projects are expected to increase in different parts of 

the world. 

WM programs have been operating in most of the western U.S. since the 1950s to 

fulfill the increasing water demand in these regions. Reconstructed climate data has 

indicated the occurrence of very lengthy and severe droughts in the arid western U.S. in 

the past (USGS, 2004). The Colorado River Basin, a major source of water supply for the 
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western U.S., has been in a drought since 1999 (BOR, 2006). Snowmelt runoff is the 

major source of water supply in the western U.S. but a significant decrease in the 

mountain snowpack is noticed in the last century in these regions (Mote et al., 2005). In 

California, there is a need of at least two million AF of additional water to sustain the 

urban growth by 2030 (Shaw, 2006). The United States Department of Interior (U.S. DoI, 

2003) has also reported the continuous increase in the consumptive use of water in the 

West to sustain urban growth. It could create serious water conflicts in the future while 

meeting the higher water demand. In addition, decreased snowpack runoff could impact 

production of hydroelectric power, thus creating adverse impacts on the power demand of 

California and other western States (Griffith and Solak, 2006; Hunter, 2007). The trend of 

increasing water demand and declining snowpack could worsen the situation even more if 

no significant action is taken (U.S. DoI, 2003). WM programs have been considered the 

most attractive option for increasing water availability.  

Since 1972, the glaciogenic seeding of winter orographic clouds has been ongoing 

in the headwater watersheds of the Colorado River Basin (Cotton, 2007). Cloud seeding 

is supposed to contribute from 0.8 to 1.8 million acre-feet (MAF) of water for the 

Colorado River Basin, which could result in a favorable benefit cost ratio for the program 

(Ryan et al, 2005; WMA, 2005; Griffith and Solak, 2006). The feasibility study of 

operational cloud seeding program in the Salt River and the mountains of Wyoming have 

shown an average increase of 10% in the November through March precipitation (Griffith 

et al, 2007). The Wyoming Water Development Commission (WWDC) through the 

Wyoming Weather Modification Pilot Project (WYMPP) has conducted silver iodide 

based cloud seeding during the winter period (60-80 days) for the months of November 
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through March (WWDC, 2005). Most of the cloud seeding for the WYMPP is done in the 

North Platte watershed (Sierra Madre and Medicine Bow ranges) in south central 

Wyoming and Wind Range River in west central Wyoming. WWDC initiated the 

program in spring 2005, and full scale cloud seeding operations started in 2007-2008. 

The present available water resources in the Platte River basin in Wyoming are fully 

allocated (WWDC, online accessed 2010). Under a moderate population growth, the 

water demand in the Green River Basin is expected to increase from 73 to 82 percent of 

its allocation given in the Colorado River and up to 88 percent in the Wind River (Big 

Horn) Basin. WWDC (2010) has estimated an additional 130,000 to 260,000 AF of water 

each spring from a 10% increase in precipitation from the proposed pilot projects. 

However there is a need to further evaluate this and quantify the impacts. 

Most WM programs consider only the rainfall augmentation and do not 

quantitatively evaluate the significant hydrological impacts. Some past studies have 

utilized observed data to evaluate the hydrological impacts of WM, but they are limited 

and insufficient to account for uncertainties (natural variability of rainfall and runoff) in 

WM programs. Modeling is considered appropriate since various WM scenarios can be 

forced into the model that could consider uncertainties about the effects of these 

programs (Seely and DeCoursey, 1975). A physically based hydrologic model that 

operates at a higher resolution could provide more realistic simulations and account for 

complex topography and diverse climate of the western United States. This paper aims to 

evaluate the possible impacts of weather modification on water supply by utilizing a 

process based hydrologic model. The WM programs are expected to augment 

precipitation by 10% in the North Platte watershed. Through modeling and WM scenario 
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analysis, this paper provides a quantitative assessment of change in water supply 

(streamflow) as a result of transformation of increased precipitation in the watershed. 

Since no studies related to hydrologic impact evaluation are yet done in the watershed, 

the impact on streamflow due to operational WM programs can be utilized for future 

water supply and demand management study.   

The rest of the paper is outlined as follows. The description of the study area, data 

needs and the hydrologic model used in this analysis are discussed in Section 3.2; model 

calibration along with the simulated results under forced WM conditions are discussed in 

Section 3.3; and the concluding remarks are provided in Section 3.4. 

 

3.2 Methodology 

3.2.1 Study Area 

The study area is the North Platte Watershed, the boundary of which lies in the 

states of Wyoming and Colorado at latitude 40.3125° to 41.9375° N, and longitude 

105.9375° to 107.0625° W (Figure 3.1). The annual precipitation varies from 25 to 60 

inches with 40 to 70 percent as winter snow (> 250 inches of snow). The watershed 

contains six streamflow gauges and eight SNOTEL stations, which are operated by 

United States Geological Survey (USGS) and National Resource Conservation Service 

(NRCS) respectively. The North Platte River, which is a tributary of the Platte River and 

starts at the high basin of North Park in north-central Colorado, flows northward into 

Wyoming along the Westside of Medicine Bow ranges and finally meets the Medicine 

Bow River and Seminoe Reservoir. The Platte River is a tributary of the Missouri River 

which is a tributary of Mississippi River. The major sites of cloud seeding include the  
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Figure 3.1 Location of the North Platte Watershed, major areas for cloud seeding
 operations, and rivers, streamflow gauges (indicated by stars) and SNOTEL 

stations (indicated by triangles) located inside the watershed. 

 

Sierra Madre and Medicine Bow ranges in south central Wyoming. Around 250 storm 

events are estimated in the target areas to attain a 10 to 15% increase in precipitation due 

to cloud seeding operations (Breed, 2008). These operations are conducted only in the 

Wyoming ranges of the North Platte watershed; the operations in the Colorado ranges of 

the watershed are of future interest. 

3.2.2 Hydrologic Model 

The hydrologic model used in this analysis is the Variable Infiltration Capacity 

(VIC) model (Liang et al, 1994; Cherkauer and Lettenmaier 2003). VIC is a macro-scale 

land surface semi-distributed hydrologic model which has been used in a variety of water 

resource applications and climate change studies (e.g. Hamlet et al, 2005; Mote et al, 

2005; Pierce et al, 2008; Hidalgo et al, 2009; Wang et al, 2009). The model uses 1/8 
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degree gridded, meteorological forcing data (precipitation, maximum and minimum 

temperature, wind speed), land cover, soil, elevation bands and other watershed 

characteristics. Simulations are carried out for each grid cell and the time series of output 

variables (e.g. runoff, soil moisture, snow water equivalent) are also stored separately for 

each specific grid. Simulations are carried out at a daily or sub-daily time step based on 

the two modes of operation- water balance and energy balance. Water balance mode 

considers equal temperature for soil surface and air, and it does not solve the surface 

energy balance. Energy balance mode solves the total water balance and simulates 

surface energy fluxes to compensate incoming total radiation fluxes. The surface fluxes 

include sensible heat, latent heat, ground heat, ground heat storage, and outgoing long 

wave.  

The VIC model uses a separate river routing model of Lohmann et al. (1996) for 

the routing of streamflow. Various options exist during the VIC simulation, most of 

which are set in a ‘global parameter file’. Newer versions of the VIC model include snow 

algorithm that solves the surface energy balance and incorporates spatially distributed 

snow coverage and snow sublimation. This snow model handles the snow interception 

and canopy processes at the macro-scale and considers two layer formulation- surface 

layer and pack layer. Energy exchange takes place from the thin surface layer; pack layer 

acts as a reservoir that stores excess snow in the surface layer. All important heat and 

energy fluxes such as sensible and latent heat, convective energy, and internal energy of 

the snowpack are considered in snow model. 
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3.2.3 Data Description 

The SNOTEL station data are obtained from the National Water and Climate 

Center of National Resource Conservation Service (NRCS). The historical data available 

in the site are daily accumulated precipitation, snow depth, snow water equivalent, and 

temperature (maximum, minimum, average). These data are available from early 1980’s 

for earlier established stations, and from early 1990’s for other stations. The monthly and 

annual streamflow data, for a period of 1940-2009, are obtained from the United States 

Geological Survey (USGS). The retrospective meteorological forcing data (precipitation 

in mm, max and min temperature in degree Celcius, wind speed in m/s), vegetation, soil, 

and snow band data are obtained from Soil and Water Modeling Group, University of 

Washington (Maurer et al, 2002; access http://www.hydro.washington.edu/SurfaceWater 

Group/data.php). All of these data are available for 1/8-degree grid cell for the 

conterminous United States. The gridded data was prepared through estimation using 

spatial and temporal interpolation of observed data sources. The meteorological forcing 

data are in a binary format and daily time steps, for a period of 1949-2000, and are 

derived from the hydrologic simulation (at a 3 hourly time step) of land surface energy 

and water variables over the continental United States. The daily wind speed (m/s) 

represents wind speed measured at an average height of two meters above the surface. 

The soil parameter file contains geographical information for each grid cell, and 

grid cell soil parameters including initial soil moisture conditions. The vegetation 

parameter file defines different landcover types that are used during simulation, number 

of vegetations and their coverage in each grid cell, and other vegetation parameters (e.g. 

LAI-leaf area index, root depth). The snow band file contains information on each 
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elevation band that is used by the snow model. The land cover data obtained from the 

Department of Geography, University of Maryland (www.geog.umd.edu/landcover) also 

contains different landcover types and their coverage at a higher (1km) resolution.   

3.2.4 Model Simulations 

All simulations are performed using the VIC model (version 4.1.1.) and its energy 

balance mode of operation. The VIC model is first calibrated and validated by forcing the 

historical meteorological data that reproduce the historical trend in streamflow. The most 

common parameters for calibration include soil parameters such as infiltration, soil depth, 

base flow velocity, and soil moisture (http://www.hydro.washington.edu/Lettenmaier 

/Models /VIC). Six snow elevation bands are selected to better represent snow processes 

for each grid cell. The routing model is not used for this analysis since the basin is small 

(only 97 grid cells) and the analysis is mainly focused on monthly, seasonal or annual 

changes in streamflow. The total simulated streamflow for the watershed is the sum of 

VIC simulated streamflow for each grid cell. A univariate calibration method is followed 

where most sensitive soil parameters are selected and sensitivity analysis is carried out to 

finalize each parameter. The sensitivity analysis for each parameter is based on model 

performance indicators. The commonly used indicators such as Pearson Correlation 

Coefficient (r), Root Mean Square Error (RMSE), Bias percentage, and Nash-Sutcliffe 

Efficiency (E) are calculated to evaluate the model performance in simulating the 

observed streamflow. They are calculated as follows (Krause et al, 2005; Wang et al, 

2009): 
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Where, Oi and Pi represent observed and predicted streamflows respectively; So 

and Sp are sample standard deviations for observed and predicted streamflows; and n is 

the number of observations. 

A VIC model is developed for the watershed and the impacts of WM on 

streamflow are accessed quantitatively based on an anticipated increase in precipitation 

due to cloud seeding operations. Precipitation is increased only for the months of cloud 

seeding operations (Nov 15-April 15). No evaluations have been performed yet for the 

pilot project that could give an actual change of precipitation in the field. The cloud 

seeding operations in the North Platte watershed are expected to increase precipitation by 

10%; this could be achieved only by seeding total storms during the months of cloud 

seeding operations. During this analysis, precipitation is increased by five (5) percent; a 

5% increment represents at least half of the total storms are seeded during the months of 

cloud seeding. This is assumed realistic for this analysis since the operational WM 

project also aims to seed at most half of the total storms. The ground based generators for 

cloud seeding operations are mainly located at the central regions of the watershed. 

Therefore, only 12 grid cells (5 on Sierra Madre and 7 on Medicine Bow ranges) are  
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Figure 3.2 Central region of the North Platte watershed where most of the ground based 
generators are located for cloud seeding operations. The impact of cloud seeding is 

assumed higher for the highlighted region in this analysis.  

 

selected from the central region where the impact of cloud seeding is assumed higher 

(Figure 3.2), and precipitations of half of the total storms during the months of cloud 

seeding, are increased by 5% (maximum). While developing the scenarios, precipitation  

is increased from 0.1% to 5%; this is done to quantify the variation in the runoff due to 

cloud seeding of different percentage of storms in the watershed. New sets of forcing data 

and various hypothetical scenarios are developed by changing precipitation in the 

retrospective meteorological data. These scenarios are forced into the calibrated VIC 

model to quantify additional streamflow due to increased precipitation. 

Additional scenarios are simulated to observe the most likely impact of cloud 

seeding on different regions of the watershed and the type of landcover. These 

simulations are carried out by increasing precipitation (5%) of half of the total storms 

during the months of cloud seeding, but only on certain regions of the watershed, and 
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different types of landcover in the watershed. The grid cells within each specific region 

are selected for the first case, while the grid cells which contain about 30% of specific 

landcover type are selected for the later case. Simulations are then carried out  

for the whole watershed and the simulated streamflows from all of these forced WM 

scenarios are compared with the historical streamflows (1981-2000) for the watershed. 

 

3.3 Results 

3.3.1 Climate Observations  

3.3.1.1 Precipitation 

 The average monthly observed precipitation (mm) is higher during the period of 

Nov-April and lower during June-August for the North Platte watershed (Figure 3.3). The 

cloud seeding operations are conducted during the Nov 15-April 15 period since this is 

the period of higher precipitation. Maximum monthly precipitation is observed at the 

Tower station that is located at the southwest border in the Colorado range; minimum 

monthly precipitation is observed at the SouthBrush Creek station which is located at the 

Medicine Bow range. 

 Figure 3.4 shows the spatial distribution of 10 years (1990-1999) average 

precipitation (mm/year) for the North Platte Watershed. Higher precipitation is observed 

in the Colorado ranges than the Wyoming ranges of the watershed. The average annual 

observed precipitation varies from 230mm to 1385mm throughout the watershed, with 

lower precipitation at the Northern regions of the watershed. 
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Figure 3.3 Average monthly precipitation (1980-2008) for the eight SNOTEL   stations in 

the North Platte Watershed. (C: Columbine; DP: Divide Peak; JW: Joe Write; NFC: 
North Fork French Creek; OB: Old Battle; SBC: South Brush Creek;                       

T: Tower; WS: Webber Springs). 
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Figure 3.4 Spatial distribution of average annual precipitation (mm/year) during the 

period of 1990-1999 for the North Platte watershed. 

 

3.3.1.2 Streamflow 

Figure 3.5a shows the annual streamflow pattern (1940-2008) for the North Platte 

watershed; the annual observed streamflow from the Wyoming ranges is higher than the 

Colorado ranges (represented by USGS gauge ‘06620000’) of the North Platte watershed.  
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Figure 3.5  a) Annual streamflow pattern for the North Platte watershed; b) Average
 monthly streamflow (cfs) during the period of 1990-1999 for six USGS gauge 

stations in the watershed. 

 

The annual observed streamflow for USGS gauge‘06630000’ is higher since it represents 

the total flow from the watershed and is located at the most downstream of the watershed. 

Both higher and lower annual streamflows are observed at different time periods; 
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maximum annual streamflows are observed during 1980-85. Figure 3.5b shows the 10-

year (1990-1999) average monthly streamflows for six USGS gauge stations located  

within the watershed. Higher streamflows are observed during May-July; minimum 

streamflows are observed during August-February; maximum streamflows are observed 

during June with values more than 4000 cubic feet per seconds (cfs) for the entire 

watershed. 

3.3.2 Model Calibration 

The model is calibrated and validated with respect to historical monthly observed 

streamflow data, for the period of 1950-1980 and 1980-2000, respectively (Figure 3.6). 

The monthly data for USGS gauge 6630000, which is located at most downstream of the 

watershed and upstream of Seminoe Reservoir, is used for this purpose. For the 

calibration period, a RMSE (43000 ac ft.), Bias (0.26 %), r (0.90) and NSCE (0.79) are 

obtained, with slight under-estimation of higher peaks and over estimation of lower 

peaks. For the validation period, a RMSE (47000 ac ft.), Bias (-2.7 %), r (0.87) and 

NSCE (0.76) are obtained, with under-estimation and over-estimation similar to 

calibration. A negative bias means the observed streamflows are higher than the 

simulated streamflows. The infiltration parameter “binf” and soil depth “d2” are found 

more sensitive in compared to other parameters during model calibration. The scatter 

plots in Figure 3.6 show a good correlation between the modeled and observed 

streamflows at lower magnitude while more scatter if found at higher magnitudes. The 

computed NSCE was slightly higher when calibrated in the water balance mode of 

operation (not shown here). The energy balance mode of operation involves a larger 

number of parameters and various other processes that might have lowered NSCE during  
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Figure 3.6  Variable infiltration capacity model calibration for 1950-1980 and validation 
for 1981-2000. Comparison of observed vs. modeled monthly streamflow. 
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model calibration. However, it is considered appropriate for this analysis since the peak 

and total runoff is simulated well with a very low bias and higher correlation coefficient. 

The finalized model calibrated parameters are: infiltration parameter (binf = 0.19); 

maximum baseflow (Dsmax = 11 mm/day); fraction of Dsmax (Ds = 0.04); fraction of 

maximum soil moisture (Ws = 0.15 mm/day); and soil depth (d2= 0.3 m).   

3.3.3 Weather Modification Scenario Analysis 

3.3.3.1 Change in Streamflow: Annual Pattern 

Simulations are carried out to observe the changes in annual streamflow with 

respect to an anticipated increase in precipitation for the North Platte Watershed. As 

discussed earlier, precipitation for half of the total storms of selected grid cells (12) is 

increased by a maximum of 5%, ranging from 0.1% to 5%; this quantifies additional 

streamflow from certain regions of the watershed where the impacts of cloud seeding 

operations are assumed higher for this analysis. Figure 3.7 displays the changes in annual 

streamflow for the Wyoming ranges of the North Platte watershed for an increased 

precipitation (0.1% to 5%) during the months of cloud seeding operations. Annual 

streamflow shows an increasing pattern with increase in precipitation, with wet years 

showing higher increase than dry years. The simulated increase in annual streamflow 

varies from 0.02% to 2% for a 0.1% to 5% increase in precipitation. 

The maximum, minimum and average changes in annual streamflow with respect 

to anticipated change in precipitation are summarized in Table 3.1. For an increased 

precipitation from 1% to 5%, the annual streamflow from the Wyoming area has 

increased from 0.3% to 1.4% (in average). This additional streamflow due to cloud 

seeding operations only in certain regions of the Wyoming corresponds to an average  
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Figure 3.7  Percent change of annual streamflow with respect to an increase in

 precipitation from 0.1% to 5% for Wyoming area of the North Platte watershed. 

 

Table 3.1  Change in annual streamflow for the Wyoming ranges and the whole North 
Platte watershed (which includes the Colorado ranges also).  

 
Change in 

Precipitation 
(%) 

Change in Annual Streamflow (%) 
For Wyoming Area For Full North Platte  

Minimum Maximum Average Minimum Maximum Average 
0.1 0.02 0.10 0.06 0.02 0.06 0.04 
0.5 0.10 0.24 0.17 0.06 0.16 0.10 
1.0 0.17 0.44 0.32 0.11 0.29 0.17 
2.0 0.32 0.85 0.61 0.20 0.54 0.32 
3.0 0.46 1.24 0.89 0.28 0.78 0.46 
4.0 0.60 1.64 1.19 0.36 1.03 0.61 
5.0 0.73 2.03 1.48 0.45 1.27 0.75 

 

 

increase of 0.1% to 0.7% of the total streamflow from the entire North Platte watershed. 

The cloud seeding operations are also performed by using an aircraft in the watershed and 

the Colorado ranges are considered a future option for these operations. As discussed in 

section 3.1.1, the Colorado ranges also possess higher precipitation as compared to other 

regions. Therefore, an increase in total streamflow (than summarized in Table 3.1) is 
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expected if these regions show a favorable condition for the extension of cloud seeding 

operations. 

3.3.3.2 Change in Streamflow: Seasonal Pattern 

The impacts of increased precipitation on seasonal streamflows are also 

examined. Figure 3.8 shows the change in streamflow pattern during May-June for an 

increased precipitation due to cloud seeding operations. During this period, the simulated 

increase in streamflow varies from 0.1% to 5% for a 1% to 5% increase in precipitation. 

The range of change of streamflows (min., max., average) during the period of May-

August (May-June; May-July; June-August) is summarized in Table 3.2. The period of 

May-July is considered to contribute almost 70% of annual streamflow for the watershed 

(Figure 3.5a). As indicated in the Table 3.2, the average increase in streamflow is also 

comparatively higher for May-July in compared to other seasons; an average increase 

from 0.5% to 2.5% is observed for a 1% to 5% increase in precipitation. An average 

increase from 0.4% to 2% is observed during the summer period (June-Aug) for the same 

range of increased precipitation. 

The higher snowpack accumulation due to wintertime (glaciogenic) cloud seeding 

operations increases snow cover during the late winter period. The higher snow cover 

during the winter period gradually melts in a warmer temperature at later periods that 

contributes to an increased soil moisture and streamflow. A successful implementation of 

WM programs in this watershed could serve as a viable option to augment precipitation 

and reduce impacts of declining streamflow during dry periods. However, an additional 

analysis, which also incorporates the impacts of climate change and water demands, is 

necessary to fully evaluate the impacts of the WM programs during dry periods. 
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Figure 3.8  Seasonal change of streamflow with respect to an increase in precipitation 
(Nov 15 – April 15) from 1% to 5% for Wyoming ranges of the North Platte         

watershed. (MJJ: May-July). 

 

Table 3.2  Change in seasonal streamflow for the cloud seeding operations on the 
Wyoming ranges of the North Platte watershed. 

 
Change in 

Precipitation 
(%) 

Change in Seasonal Streamflow (%) 
May-June (MJ) May-June-July (MJJ) June-July-Aug (JJA) 

Min Max Mean Min Max Mean Min Max Mean 
0.1 0.01 0.21 0.07 0.01 0.15 0.07 0.03 0.15 0.08 
0.5 0.08 0.64 0.26 0.11 0.66 0.27 0.07 0.60 0.26 
1.0 0.09 1.16 0.49 0.20 1.33 0.53 0.12 1.19 0.48 
2.0 0.21 1.94 0.91 0.34 2.62 1.02 0.18 2.33 0.90 
3.0 0.32 2.90 1.36 0.51 3.88 1.51 0.26 3.44 1.35 
4.0 0.43 3.87 1.83 0.66 5.18 2.03 0.33 4.58 1.81 
5.0 0.56 4.91 2.28 0.83 6.45 2.54 0.41 5.69 2.2 
 

 

3.3.3.3 Region Specific Change of Precipitation 

This analysis could be helpful in identifying the most effective regions for cloud 

seeding operations, in terms of runoff augmentation in the watershed. For this purpose, 

the entire watershed is divided into six regions (Figure 3.9): southeast (SE), southwest 



www.manaraa.com

 64

(SW), centraleast (CE), centralwest (CW), northeast (NE) and northwest (NW). 

Precipitations of the grid cells located within each specific region are increased by 5% 

and the simulations are carried out for the whole watershed; the simulations are continued 

for all regions, one region at a time, that considers increased precipitation for the specific 

region only. The simulated increases in annual streamflows for the Colorado range of the 

watershed, which is located on the Southern region (SE, SW), vary from 2% to 4% of the 

annual streamflows for that region (Figure 3.10); the median increase is calculated as 

2.5% and 3.2% for SE and SW respectively.  

The simulated increases in total annual streamflows (measured at USGS gauge 

06630000) from the entire watershed vary depending on regions where precipitation is 

increased. An increase in streamflow from 0.2% to 3% is simulated for different regions, 

where a median increase of 1.50% and 1.62% is simulated for CW and SW regions 

respectively. A maximum increase in annual streamflows in CW and SW regions 

indicates that the cloud seeding operations can be considered most effective in these 

regions. SW is more favorable if the median increase in streamflow is considered, while 

CW is favorable if the maximum increments are considered. A comparatively higher 

streamflow from the western area of Southern and Central regions could also be 

attributed to higher precipitation in these regions than other areas in the watershed 

(Figure 3.4). CE and CW regions are found to have slightly higher median increase in 

streamflow than SE region. The operational cloud seeding programs are conducted over 

the Medicine Bow and Sierra Madre ranges of the North Platte watershed which are 

located at the central (CE and CW) regions. The Southern regions have shown higher 

contribution for increased streamflow for the Colorado ranges as well as the entire 
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Figure 3.9  North Platte Watershed showing different types of land cover and regions for 
cloud seeding operations considered for this analysis. 
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Figure 3.10  Boxplots of percentage change of annual streamflow for USGS gauge 
06620000 and 0663000, when precipitation is increased for specific                       

regions (Figure 3.8) only. 
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watershed; therefore, these regions can be considered favorable for the extension of cloud 

seeding operations. The minimal increase in simulated streamflow in northern (NW and 

NE) regions indicate that these regions can be considered less effective for cloud seeding 

operations. 

3.3.3.4 Change of Precipitation for Different Landcover 

This analysis determines the dominant landcover that simulates higher streamflow 

during the cloud seeding operations in the watershed. As shown in Figure 3.9, the 

landcover in the watershed has been classified into nine major classes: Evergreen 

Needleleaf Forest (EG), Open Shrublands (OS), Grasslands (GL), Woodland (WL), 

Wooded Grasslands (WGL), Deciduous Broadleaf Forest (DF), Mixed Forest (MF), 

Closed Shrub lands (CS) and Crop lands (CL). The grid cells with approximately 30% 

coverage of specific landcover are selected and precipitations of the selected grid cells 

are increased by 5%. Simulations are carried out for the whole watershed with increased 

precipitation for each landcover; the simulations are performed for all landcover types 

separately. The impacts of DF and MF are not considered in this analysis, since no grid 

cells are found to occupy more than 15% of this type of landcover. As shown in Figure 

3.11, EG and WL show higher increase in annual streamflow for the watershed; the 

annual streamflow has increased from 1% to 4.5%, with EG showing higher increase than 

WL. The median increase in annual streamflow is calculated between 1.8% to 2% for WL 

and 3.1% to 3.3% for EG, when comparisons are made for annual streamflows from the 

whole watershed and the southern ranges only. A median increase of less than 1% is  
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Figure 3.11  Boxplots of percentage change of annual runoff for an increase in
 precipitation (10%) for different landcover. a) USGS gauge 06620000;  

 b) USGS gauge 06630000. 

 

calculated for other landcover types (WGL, OS, CL, GL), with OS showing the minimal 

changes on streamflow.  

As discussed earlier, the cloud seeding operations are found more effective on 

CW and SW regions of the watershed. CW regions have higher coverage of WL, EG and 

GL; SW regions have higher coverage of EG and MF, and lower coverage of a 

combination of WL, WGL, CL and GL. Both regions, which are considered more 

favorable for cloud seeding operations, have higher coverage of EG land cover. NE and 

NW regions, which are found to contribute less for cloud seeding operations, have higher 

coverage of OS and GL. Under similar conditions of increased precipitation and 

watershed characteristics, the difference in simulated annual streamflows could be due to 

the properties of landcover and soil present in different regions of the watershed. The 

saturated hydraulic conductivity of soil is similar for all regions. But the initial layer 

moisture content is approximately three times higher for the central and southern part as 
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compared to the northern part; this may contribute to the higher and earlier peak runoff 

from these regions. The minimal change in streamflow for OS may be attributed to higher 

evaporation and lower initial soil moisture. The thickness of soil moisture layer and 

average soil temperature that are used as the bottom boundary for soil heat flux solution 

in the VIC are also higher for the northern region. This may influence the water budget 

and energy balance and increase evaporation (evapo-transpiration) which further reduces 

total runoff, and slows down the time for seasonal peak flows from this region.  

This analysis can identify the dominant landcover types in the areas that receive 

higher precipitation and produce higher streamflow. Additional analysis may be required 

to determine the most favorable landcover for cloud seeding operations in the watershed.   

3.3.4 Accuracy of the Results 

 This analysis has developed a hydrologic model for the North Platte watershed 

and tried to evaluate the impacts of weather modification on streamflow. However, there 

are various uncertainties associated with this analysis. Although the operational cloud 

seeding projects are estimated to attain a 10% to 20% increase in precipitation, 

evaluations are yet to be done for the project to ascertain this claim. Other sources of 

uncertainties in the simulated results are associated with the capability of the hydrologic 

model, data needs, topography, and natural continuous climate variability.  

Uncertainty in the selection of hydrologic model is addressed by selecting the 

VIC model. VIC is considered suitable because this model accounts for the physical 

processes in between soil, land and atmosphere, and considers the sub-grid variability in 

soil moisture storage capacity, precipitation, land surface vegetation classes, and 

topography. More realistic simulations of water budget and energy balance processes can 
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be carried out at higher spatial and temporal resolution. Higher resolution simulation is 

considered important due to the complex terrain and diverse climate regimes of the 

western United States (Leung et al, 2004). Although the hydrologic model is physically 

based and doing a good job in simulating changes at higher resolution, the performance 

of the model is restricted by the data used during simulation. The measured station data 

(e.g. meteorological, streamflow) that are used during calibration, validation, and all 

other simulations are likely affected by many microclimatological effects (Osborn and 

Hulme 1997). 

Other data used in this analysis (such as soil and land use) may have some 

discrepancy with respect to the accurate field measurements and may need an update. 

Surface and atmospheric processes differ with the change in temperature, precipitation, 

and land use. Although the soil parameters chosen for calibration retain their properties 

for a longer time period, the use of same optimized parameters for all scenarios ignores 

the potential feedback in between these processes (Chiew et al, 1995). These 

uncertainties could lower our confidence to some extent while concluding the reliability 

of the simulated results in this research.  

 

3.4 Conclusions 

 This paper has developed a hydrologic model (within VIC) to evaluate the 

impacts of WM programs on water supply. The impacts have been evaluated in terms of 

change in streamflow. This paper has also provided a proof of concept of development 

and application of WM scenarios for hydrologic impact evaluation. The concept of 
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modeling and WM scenario analysis as presented here can be implemented to any WM 

projects to observe their impacts on water supply.   

The corresponding changes in streamflow are quantified as a result of cloud 

seeding operations in the North Platte watershed. With effective WM programs, the 

increased precipitation could augment annual and seasonal streamflow and reduce the 

impact of declining streamflow during dry periods. The present cloud seeding operations 

are conducted on the central regions of the watershed. This research has found the 

centralwest and southwest regions of the watershed, which consist of higher percentage 

of woodland and evergreen needleleaf land cover, to be more favorable for runoff 

augmentation through cloud seeding operations. These operations are found to be less 

effective in northern regions that consist of a higher percentage of open shrublands and 

grasslands. 

In both cases- the operational WM programs are claimed effective based on 

precipitation augmentation or the WM programs are proposed as future options, the 

impacts of these programs on water supply can be evaluated based on this analysis. The 

results presented here can also be utilized directly by the WM projects operating at 

representative watersheds. This study calls for a further work that estimates the impacts 

of WM on other hydrologic parameters-for example, soil moisture, reservoir level, evapo-

transpiration, snow water equivalent, e.t.c. Building upon this research, future research 

projects can be carried out to consider climate, water demand, and land use changes and 

assess the effectiveness of the WM programs. Chapter 4 has utilized this hydrologic 

model to evaluate the impacts of climate change on water availability over the North 

Platte watershed. 
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CHAPTER 4  

QUANTITATIVE ASSESSMENT OF LONG TERM HYDROLOGIC IMPACTS OF 

CLIMATE CHANGE OVER NORTH PLATTE WATERSHED, WYOMING 

4.1 Introduction 

The impact of climate change on water resources is a major issue for the world. 

The likely impacts of climate change have been documented by various studies in 

different parts of the world (Bates et al, 1994; Aizen et al, 1997; Arnell, 1999; Bronstert 

et al, 1999; Hamlet and Lettenmaier, 1999; Miller et al, 1999; Braun et al, 2000; Arora 

and Boer, 2001; Bergstrom et al., 2001; Loukas et al, 2002; Jian and Shuo, 2006; Kay et 

al, 2006; Hayhoe et al, 2007; Liu et al, 2007; Minville et al, 2008; Barontini et al 2009; 

Gerbaux et al, 2009). The major impacts are observed on the hydrological cycle and 

regional water availability for industry, domestic use, flood control, irrigation and 

agriculture, aquatic life survival, reservoir operation and navigation. The hydrologic 

response due to climate change further affects the strategies and polices of water 

resources management (Liu et al 2007; Barontini et al 2009). It has been identified that 

almost 90% of the observed changes on physical and biological systems on a global scale 

are much more likely due to increased warming (NASA, 2008). The increasing 

temperature trends are attributed to increasing anthropogenic activities (IPCC, 2007a) 

and IPCC (2007b) suggest a general trend of increasing temperature (and drier 

conditions) in mid latitudes. 

Snowmelt runoff is a major source of water supply in the western United States. 

A significant decrease in mountain snowpack was noticed in the last century in these 

regions, which was primarily driven by increase in temperature rather than the change in 
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precipitation (Mote et al., 2005; Hamlet et al, 2005; Mote, 2006; Maurer et al, 2007; 

Miller and Piechota, 2008). The increase in temperature is attributed to higher 

anthropogenic input of GHGs, ozone and aerosols (Barnett et al, 2008; Bonfils et al., 

2008; Hidalgo et al, 2009; Pierce et al, 2009). Several earlier studies have showed the 

continuous climate disruption and hydroclimatic changes in the western U.S., in terms of 

declining snowpack, lower snow water content, earlier snowmelt, and shift in spring 

runoff timing (Roos 1987, 1991; Wahl 1992; Aguado et al. 1992; Pupacko, 1993; 

Dettinger and Cayan 1995; Groisman et al., 2004; Leung et al, 2004; Vanrheenen et al, 

2004; Regonda et al, 2005; Stewart et al, 2005; Knowles et al., 2006; Hunter 2007).  

Reconstructed climate data has also indicated the occurrence of very lengthy and 

severe droughts in the arid western U.S. in the past (USGS, 2004). The Colorado River 

Basin, a major source of water supply for the western U.S., has been in a drought since 

1999 (BOR, 2006). The U.S. DoI (2003) has reported a continuous increase in the 

consumptive use of water in the West to sustain urban growth. In California, there is a 

need of at least two million more acre feet (AF) of water to sustain the urban growth by 

2030 (Shaw, 2006). It could create serious water conflicts in the future while meeting the 

higher water demand. In addition, decreased snowpack runoff could impact production of 

hydroelectric power, thus creating adverse impacts on the power demand of California 

and other western States (Griffith and Solak, 2006; Hunter, 2007). The trend of 

increasing water demand and declining snowpack could worsen the situation even more if 

the dominant affect of anthropogenic climate change is continued into the future.  

Model simulations applying a number of Global Climate Models (GCMs), 

Regional Climate Models (RCMs), and multiple projections over the western U.S. have 
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shown increasing temperatures for all future scenarios and regions; but it was difficult to 

predict precipitation response for these regions (Giorgi et al, 1994; Leung and Ghan, 

1999; Kim et al., 2002; Snyder et al., 2002; Coquard et al., 2004; Hamlet et al, 2005). It is 

documented that the dry subtropics are likely to dry further while the wet higher latitude 

regions are likely to get wetter in the future (Held and Sodden, 2006). The U.S. Global 

Change Research Program (2009) has also reported a strong seasonal climatic variation in 

the arid western regions of U.S. in the past. The greatest seasonal change was observed 

during the winter months. The projected changes in temperature over this century have 

shown the summer changes larger than winter. An observed temperature rise of about 2.0 

ºF at present with respect to baseline periods (1960-1979) is expected to increase from 

2.5 ºF to 13 ºF under increased greenhouse gas conditions.  

The North Platte watershed in Wyoming is a region in the western U.S. and the 

temperature and precipitation are projected to change in the future. The North Platte 

River is a tributary of Platte River and the present available water resources in the Platte 

River basin in Wyoming are fully allocated (WWDC, online accessed 2010). The water 

demand in nearby River Basins- Green River Basin is expected to increase from 73 to 82 

percent of its allocation given in the Colorado River and up to 88 percent in the Wind 

River (Big Horn) Basin under a moderate population growth. Under changing future 

climatic conditions, it is expected to further stress future water availability over the North 

Platte watershed.    

A number of GCMs and scenarios have been used by several studies to address 

uncertainty in the climate change related studies (McGuffie et al, 1999; Durman et al, 

2001; Jones and Reid, 2001; Ra¨isa¨nen and Joelsson, 2001; Prudhomme et al, 2002; 
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Covey et al, 2003; Huntingford et al., 2003; Watterson and Dix, 2003; Leung et al, 2004; 

Ekstro¨m et al, 2005; Fowler et al, 2005; Milly et al, 2005; Frei et al, 2006; Merritt et al, 

2006; Tebaldi et al, 2006; Beniston et al, 2007; Buonomo et al, 2007; Fowler et al, 2007; 

Maurer, 2007; Seager et al, 2007; Vicuna et al, 2007; Dankers and Feyen, 2009; Dankers 

et al, 2009; Fowler and Ekstro¨m, 2009). Various climate scenarios and GCMs for 

regional analysis have simulated different results. The use of a single GCM output is not 

usually the best approach since the observed changes are very likely prone to uncertainty 

(McGuffie, 1999). The mean model result, which is obtained by averaging all the 

ensemble model simulations, is considered to provide the best comparison with 

observations for climatological mean fields (Lambert and Boer, 2001; Coquard et al, 

2004).  

Most regional hydroclimatic studies have utilized the regional climate change 

scenarios from GCM output and hydrologic models to study the potential impacts of 

climate change on existing water resources. Major uncertainties are associated with the 

scales (spatial and temporal) and development of scenarios used in hydroclimatic 

modeling. Higher spatial resolution better represents the complex terrain and diverse 

climate regimes of the western United States (Leung et al, 2004). The process-based 

models such as variable infiltration capacity (VIC) have been utilized previously to study 

the hydroclimatic impacts on water resources in these regions (Liang et al, 1994). 

Therefore, hydrological simulations using process based models and downscaled regional 

climate change scenarios may be helpful in producing more realistic simulations of 

hydrological changes at a regional scale. The use of a number of GCMs and scenarios are 

recommended to address uncertainty in the simulated results. This paper utilizes a 
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process based model and higher resolution climate data for long term forecasting. This 

paper aims to develop an improved methodology that incorporates downscaled climate 

data into a process based hydrological model and derive streamflow projections to 

evaluate the potential impacts of climate change on water availability. The climate 

parameters such as temperature and precipitation are expected to change in future that 

may significantly impact available water resources.  

This paper quantitatively assesses the long term response of streamflow under 

changing climate scenarios over the North Platte watershed. Since no studies related to 

streamflow forecasting under anthropogenic climate change conditions are yet done in 

the watershed, this study can be utilized in future water availability assessment and 

demand management study. In order to achieve this goal, this paper utilizes the VIC 

model and climate inputs from the ensemble multi-model, multi-scenario, multi-

projection data from the World Climate Research Programme’s (WCRP’s) Coupled 

Model Inter-comparison Project Phase 3 (CMIP3), hosted by Lawrence Livermore 

National Laboratory (LLNL) Program for Climate Model Diagnosis and Inter-

comparison (PCMDI) (Maurer et al, 2007). With both VIC model and downscaled 

WCRP CMIP3 data at same scale (12 km squared, daily), the hydrologic simulations can 

be performed at same spatial and temporal resolution. The monthly temperature and 

precipitation data from WCRP CMIP3 are already statistically downscaled using the bias 

correction and spatial downscaling (BCSD) technique. BCSD is considered to have the 

capabilities comparable to other statistical and dynamical downscaling approaches 

(Wood et al., 2004). 
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The rest of the paper is outlined as follows. The description of the study area, data 

needs and the hydrologic model used in this analysis are provided in Section 4.2; 

simulated results and discussions in Section 4.3 and 4.4; and conclusion in Section 4.5. 

 

4.2 Methodology 

4.2.1 Study Area 

The study area is the North Platte Watershed which lies in the states of Wyoming 

and Colorado at latitude 40.3125° to 41.9375° N, and longitude 105.9375° to 107.0625° 

W (Figure 4.1). The watershed contains six streamflow gauges and eight SNOTEL 

stations that are operated by the United States Geological Survey (USGS) and the 

National Resource Conservation Service (NRCS) respectively. The annual precipitation 

varies from 25 to 60 inches with 40 to 70 percent falling as winter snow (> 250 inches of 

snow) (WWDC, online accessed 2010). The North Platte River, which is a tributary of 

Platte River and starts at the high basin of the North Park in north-central Colorado, flows 

northward into Wyoming along the Westside of Medicine Bow ranges and finally meets 

the Medicine Bow River and Seminoe Reservoir. The Platte River is a tributary of the 

Missouri River, which is a tributary of the Mississippi River. 

4.2.2 Hydrologic Model 

The hydrologic model used in this analysis is known as the Variable Infiltration 

Capacity (VIC) (Liang et al, 1994; Cherkauer and Lettenmaier 2003), which is a macro-

scale, physically based, semi-distributed, land surface hydrologic model. The VIC model 

has been used in a variety of water resource applications and climate change studies (e.g. 

Hamlet et al, 2005; Mote et al, 2005; Pierce et al, 2008; Hidalgo et al, 2009; Wang et al,  
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Figure 4.1  Location of the North Platte River, streamflow gauges (indicated by filled 
stars) and SNOTEL stations (indicated by filled triangles) inside the                          

North Platte watershed. 

 

2009). The major input data such as meteorological forcing data (in essences 

precipitation, maximum and minimum temperature, and wind speed), land cover, soil, 

elevation bands, and other watershed characteristics are 1/8 degree gridded data. The VIC 

model operates in two modes- water balance and energy balance; simulations are carried 

out at a daily or sub-daily time steps based on these two modes of operation. The water 

balance mode does not solve the surface energy balance, while the energy balance mode 

solves the total water balance and simulates surface energy fluxes to compensate for 

incoming total radiation fluxes. Simulations are carried out for each grid cell and the time 

series of output variables (e.g. runoff, soil moisture, evapo-transpiration) are also stored 
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separately for each specific grid. The energy fluxes such as sensible heat, latent heat, 

ground heat, ground heat storage, and outgoing long wave are incorporated in the energy 

balance mode.  

The VIC model uses a separate river routing model (Lohmann et al., 1996) and 

snow model. The routing model is not used in this analysis since this analysis is focused 

on monthly, seasonal, or annual streamflows. The snow algorithm incorporated in the 

VIC model solves the surface energy balance and also includes spatially distributed snow 

coverage and snow sublimation. All important heat and energy fluxes (e.g. sensible and 

latent heat, convective energy, and internal energy), snow interception, and canopy 

processes are incorporated in the snow model. Two layer formulations are considered- 

surface layer and pack layer. The thin surface layer acts as an energy exchange layer and 

the pack layer acts as a reservoir to store excess snow in the surface layer. The various 

simulation options inside the VIC model are set in a ‘global parameter file’. 

4.2.3 Data Description 

The retrospective meteorological forcing data (precipitation in mm, maximum and 

minimum temperature in degree Celcius, and wind speed in m/s), vegetation, soil, and 

snow band data are obtained from the Soil and Water Modeling Group, University of 

Washington (http://www.hydro.washington.edu/SurfaceWater Group/data.php; Maurer et 

al, 2002). All of these data are available for 1/8-degree grid cell for the conterminous 

United States. The meteorological forcing data are in a binary format and daily time 

steps, for a period of 1949-2000, which were derived from the hydrologic simulation (at a 

3 hourly time step) of land surface energy and water variables over the continental United 

States. The gridded data was prepared through estimation using spatial and temporal 
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interpolation of observed data sources. The daily wind speed (m/s) represents wind speed 

measured at 2m above the ground surface. The soil parameter file contains geographical 

information for each grid cell, and grid cell soil parameters including initial soil moisture 

conditions. The vegetation parameter file defines different landcover types that are used 

during simulation, number of vegetations and their coverage in each grid cell, and other 

vegetation parameters (e.g. LAI-leaf area index, root depth). The snow band file contains 

information on each elevation band that is used by snow model.  

The SNOTEL stations located within the North Platte watershed contains 

historical data for daily accumulated precipitation, snow depth, snow water equivalent, 

and temperature (max, min, average). These station data are obtained from the National 

Water and Climate Center of National Resource Conservation Service (NRCS). These 

data are available from early 1980’s for earlier established stations, and from early 1990’s 

for other stations. 

The WCRP’s CMIP3 multi-model dataset used in this analysis contains the fine 

spatial resolution (1/8-degree) translations of 112 contemporary climate projections for 

three major climate emission scenarios (A1B, A2 and B1) from IPCC and 16 robust 

GCMs, for the whole contiguous United States (http://gdo-dcp.ucllnl.org). These GCMs 

are developed from different parts of the world. The three emission scenarios are 

categorized as higher (A2, CO2 concentration ~ 820 ppm by 2100), medium (A1B, CO2 

concentration ~ 700 ppm by 2100), and lower forcing (B1, CO2 concentration ~ 550 ppm 

by 2100) for the multi-model runs. A more detailed description of the type of GCMs and 

scenarios can be obtained through the above link. The multi-model dataset consists of 
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statistically downscaled average monthly temperature and precipitation data from 1950-

2100.  

There is a need to further temporal downscale the BCSD monthly data based on 

the VIC model daily input requirement. The BCSD monthly data for each grid are 

downscaled to daily data via random sampling and temporal downscaling (Wood et al, 

2002, 2004). During random sampling, a random month is selected from historical 

observations that represent the same month that needs downscaling. Anomaly fields 

(multiplicative for precipitation and additive for temperature) are constructed with respect 

to observed and modeled data, which are different for each calendar month and are 

applied to data series to downscale it from monthly to daily time intervals. The daily 

wind speed (m/s) data required for the VIC model for future climate simulations are 

developed by generating random samples from historical wind observations.  

4.2.4 Model Simulations 

The VIC model used in this analysis is calibrated as described in Section 3.3.2 for 

the North Platte Watershed. Calibration and validation of the VIC model was done in 

energy balance mode of operation based on historical monthly streamflow. The 

downscaled daily forcing data for each grid located on the North Platte Watershed and 

climate projection (scenario) are forced into the calibrated VIC model. A continuous 

simulation is carried out from 1950-2100 to observe the long-term streamflow projections 

under anthropogenic climate conditions. Model simulations are carried out for multiple 

projections from 16 GCMs and multiple scenarios (39 for A1B, 36 for A2, and 37 for 

B1). All comparisons in this analysis are based on simulated streamflows (for future and 

historical period) derived by using GCM output data. The model simulated streamflows 



www.manaraa.com

 81

are compared between different time frames (2011-2040, 2041-2070, and 2071-2100) and 

time scales (monthly and annual) with respect to the baseline period (1971-2000). The 

simulated streamflow are compared to USGS gauge 06630000 which is located at the 

most downstream point of the North Platte watershed, but upstream of the Seminoe 

Reservoir.  

The variation and the distribution of simulated changes in streamflow for multi-

model projections from each emission scenario are compared using box plots and 

projections probability density function (pdf) plots. Box plots provide a quantitative 

comparison of location (median) and scale (inter-quartile range). For this research, a box 

plot is used to show the variability in terms of mean, median and quartiles of changes in 

streamflow. A pdf provides the relative likelihood of occurrence of a random variable. 

The Kernel density function is used in this analysis as a non- parametric way of 

estimating probability density function for continuous random variables.  

4.2.5 Goodness of Fit Test 

A goodness of fit test provides a statistical measure of the existence of any 

significant difference in streamflow distributions between emission scenarios at different 

time periods. A two-sample Kolmogorov-Smirnov (KS) non-parametric test is used in 

this analysis to test the streamflow distributions of two data vectors. The KS-Test 

measures absolute maximum cumulative difference between the two distribution 

functions (Stephens, 1970; Kharin and Zwiers, 2000). 

D = max |Z1 – Z2|      (4.1) 

Where, Z1 and Z2 represent data vectors for each distribution. While performing 

this test, the null hypothesis assumes that the two data vectors (Z1 and Z2) are from the 
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same continuous distribution; the alternative hypothesis is that they are from different 

distributions. The hypothesis is rejected if the test value, which is based on maximum 

cumulative distance, exceeds a critical value based on sample size.  

The KS-Test is generally applied for independent samples; however streamflow 

distribution may show temporal dependency in the data series. A random permutation test 

is also applied to verify the results from the general KS-Test for streamflow distributions 

that show autocorrelation. This test is performed by randomly permuting each pair of 

streamflow data from two distributions that are holding a same time frame. The random 

permutation is carried out for 1000 times and the final test value (in this case critical ‘p’ 

value) is calculated based on the distribution of test statistics obtained from each 

permutation. Each test statistic represents the maximum cumulative difference in between 

the two streamflow distributions for each random permutation.  

 

4.3 Results  

4.3.1 Precipitation and Temperature Pattern 

Based on the ensemble climate projections for each scenario, the average annual 

temperature shows a linear increasing trend for future periods when compared with the 

average annual temperature for the baseline period (Figure 4.2a). Higher temperatures are 

observed for the medium emission scenario (A1B) during 2041-70, while maximum 

temperatures are observed for the higher emission scenario (A2) during 2071-2100. An 

increase of about 2°C is observed for all scenarios until 2040, which reaches maximum at 

the end of this century (4°C for A1B, 5°C for A2, and 2.5°C for B1).   
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As shown is Figure 4.2b, the percent change of annual precipitation with respect 

to the average annual precipitation from the baseline period shows both increasing and 

decreasing patterns with changes in magnitude for each scenario and time periods. No 

specific trends are observed for changing precipitation until 2035; an increasing trend is 

observed for scenarios at later periods-A1B after 2035, and B1 and A2 after 2050. Up to 

the year 2100, the calculated change in annual precipitation is between -6% to 8% for B1, 

-3% to 9% for A2, and -2% to 12% for A1B; the average increase in annual precipitation 

is calculated to be 3.2% for A2 and B1, and 4.2% for A1B. 

 

0

1

2

3

4

5

6

20
11

20
19

20
27

20
35

20
43

20
51

20
59

20
67

20
75

20
83

20
91

20
99

Te
m

p
e

ra
tu

re
 c

h
a

ng
e 

( °
C

)

Year

A1B A2 B1

-8

-4

0

4

8

12
20

11

20
19

20
27

20
35

20
43

20
51

20
59

20
67

20
75

20
83

20
91

20
99

C
ha

n
g

e 
in

 p
re

ci
p

ita
tio

n 
(%

)

Years

A1B A2 B1

 

Figure 4.2  Observed climate pattern for each emission scenario, averaged over multi-
model climate projections from WCRP CMIP3 dataset. a) Change in temperature and 

b)Change in precipitation, with respect to average  annual temperature and  
precipitation for the baseline period (1971-2000). 

 

The spatial distribution of modeled and observed average annual precipitation 

(mm/year) during the period of 1990-1999 shows similar distribution at most regions of 

the watershed (Figure 4.3a). Modeled precipitation from a single GCM (BCCR BCM 2.0) 

based on the A1B scenario is taken here as an example for comparison. The average 

annual precipitation varies from 200 to 1400 mm per year throughout the watershed, with  
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Figure 4.3  a) Spatial distribution of observed and modeled average annual precipitation 

(mm/yr) for the North Platte watershed during the period of 1990-1999. 
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Figure 4.3  (b) Modeled vs. observed maximum and minimum daily temperatures (°C) for 

the North Platte watershed during 1990-1999. Modeled temperature represents an 
average temperature from 112 climate projections. The light and dark grey           

symbols represent maximum and minimum temperatures respectively.   

 

comparatively higher precipitation towards the Colorado regions of the watershed. A 

good correlation is observed between the modeled and observed min and max daily 

temperatures for the watershed during the same period; a higher correlation is observed 

for the maximum temperature than the minimum temperature (Figure 4.3b). Modeled 
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temperature represents the gridded average of temperature from 112 climate projections 

for three emission scenarios for the watershed. 

4.3.2 Streamflow Projections 

 The simulated annual streamflows during the period of 1971-2100 for 112 climate 

projections from emission scenarios A1B, A2, and B1 are shown in Figure 4.4. 

Maximum and minimum annual streamflows are observed at different future time periods 

for different climate projections. Some of the GCMs have simulated very high 

streamflows; the maximum annual streamflow is simulated by CCCMA CGCM 3.1.2 in 

the year 2030 for A1B. For probable maximum and minimum streamflows (in this case 

90th and 10th percentile) over this century, the simulated streamflows show the same 

range of variation between the scenarios. Both increasing and decreasing streamflow 

patterns are observed until the end of this century. The simulated streamflows are 

different between the climate projections; during certain time periods they are opposite to 

each other. The observed annual streamflow also shows both increasing and decreasing 

pattern and varies within the probable max and min range for most years (except some 

wet and dry years). A 10-year moving average of annual streamflow show smaller 

variation in compared to variation from multiple projections for each emission scenario.  

 4.3.2.1 Inter-Scenario Comparison 

 The simulated annual streamflows are compared between the scenarios. Annual 

streamflow represents an average of annual streamflows from all climate projections for 

each scenario. As shown in Figure 4.5, the simulated streamflows are comparatively 

higher for A2 and B1 until 2020, while it’s higher for A1B towards the end of this 

century. The calculated 10-year moving average shows an increasing pattern for future  



www.manaraa.com

 86

0

500

1000

1500

2000

2500

3000

1
97

1

1
97

9

1
98

7

1
99

5

2
00

3

2
01

1

2
01

9

2
02

7

2
03

5

2
04

3

2
05

1

2
05

9

2
06

7

2
07

5

2
08

3

2
09

1

2
09

9

Projections 10 years average Probable Max and Min Observed

 

0

500

1000

1500

2000

2500

3000

19
71

19
79

19
87

19
95

20
03

20
11

20
19

20
27

20
35

20
43

20
51

20
59

20
67

20
75

20
83

20
91

20
99

Projections 10 years average Probable Max and Min Observed

0

500

1000

1500

2000

2500

3000

1
97

1

1
97

9

1
98

7

1
99

5

2
00

3

2
01

1

2
01

9

2
02

7

2
03

5

2
04

3

2
05

1

2
05

9

2
06

7

2
07

5

2
08

3

2
09

1

2
09

9
Projections 10 years average Probable Max and Min Observed

 
Figure 4.4  Observed and model simulated long term streamflow for multi-model climate 

projections from emission scenarios A1B, A2 and B1 respectively. Total number of                   
climate projections: 39 for A1B, 36 for A2, and 37 for B1. 



www.manaraa.com

 87

periods that is visible after 2020. The calculated average annual streamflows are higher 

during the period of 2085-90 and maximum in 2087 and 2089; A1B has also shown the 

maximum annual streamflow in 2087. 
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Figure 4.5  Streamflow projections for emission scenarios A1B, A2 and B1 during 1971-
2100. Average streamflow represents the average of annual streamflows for                   

all scenarios. 

 

The inter-scenario comparison of percent change of annual streamflow with 

respect to average annual streamflow for the baseline period (1971-2000) is also 

performed. Although lower streamflows are observed for some years, the average change 

in streamflow indicates an increase until 2100. An average increase of about 7.2%, 4.8% 

and 5.3% is calculated for A1B, A2, and B1 respectively during 2011- 2100. The 

calculation of percentiles, mean, minimum and maximum change in streamflow for all 

scenarios are summarized in Table 4.1. The mean results obtained from the ensemble 
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Table 4.1  Calculation of minimum, maximum, mean and percentiles of change in annual 
streamflow (%) for emission scenarios A1B, A2 and B1, during the period of 2011-2100 

with respect to baseline period (1971-2000). 
 

 

 

multi-model climate projections are considered to address the uncertainties in the 

scenarios of change. While considering all scenarios, an average increase of 5.8% is 

calculated in annual streamflow for the projected climate change conditions. 

Figure 4.6 shows the average annual streamflows derived from multiple 

projections during 1971-2100 for 90th. percentile (upper solid line) and average annual 

streamflow (lower dotted line) for the baseline period. The number of years that exceed 

the 90th. percentile streamflow for the baseline period increases while moving towards 

2011-2040, 2041-2070, 2071-2100; all years during 2071-2100  show higher 

streamflows. Except some years (2025-26, 2038), all future years during 2011-2100 show 

streamflows higher than the average annual streamflow for the baseline period; a 

maximum decrease of 4% is calculated in annual streamflow in the years 2025/26; a 

maximum increase of 19% is calculated in the year 2087. 

The lower annual streamflows for some years may be due to a decrease of 

precipitation and a continuous increase of temperature during these periods. This causes 

an increase in evapo-transpiration and reduction in soil moisture and streamflow. The 

overall increase in streamflow may be due to the projected increase in average annual 

Emission 
Scenarios 

Percent Change (%) 
1st Quartile Median 3rd Quartile Min Max Mean 

A1B 0.7 6.9 12.4 -12.8 27.4 7.2 
A2 0.3 4.7 9.0 -10.5 23.0 4.8 
B1 1.2 5.5 9.5 -13.6 22.0 5.3 
Average 0.7 5.7 10.3 -12.3 24.2 5.8 
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Figure 4.6  Average of annual streamflows from three emission scenarios A1B, A2 and 
B1 during 1971-2100. The upper solid and lower dotted line represent 90th. percentile 

and average annual streamflow for the baseline period (1971-2000). 
 

 

precipitation and higher snow melt in a warmer future climate; an overall increase in 

annual precipitation with respect to average annual precipitation for the baseline period is 

calculated 3.5% during 2011-2100; an average increase of 5.5% is calculated during 

2071-2100. This increasing streamflow pattern is similar to upward trend in runoff 

observed for the far Northwestern U.S. by Milly et al (2004).  

4.3.2.1.1 Periodical Variation 

The annual streamflow for each emission scenario during 2011-40, 2041-70, and 

2071-2100 (represented as 2030’s, 2060’s and 2090’s) are compared with average annual 

streamflow for the baseline period. Maurer et al, 2007 have suggested that the results and 

statements can be supported more confidently if the comparisons are made with respect 

to some range of time rather than a specific month or day within that time period. As 

shown in Figure 4.7, the change in streamflow varies from -20% to 62% depending on 

the emission scenarios and future time periods. The highest and lowest range of 
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variations is shown by A1B and B1 respectively. For multi-decadal period, similar 

increasing and decreasing streamflow patterns are observed for all scenarios; the median 

change in streamflow is higher during 2071-2100 and lower during 2011-40. As noted 

earlier, the average annual precipitation and temperature both show a maximum increase 

during 2071-2100 with respect to baseline period. An increase in precipitation and an 

additional runoff from snowmelt due to higher temperature may be contributing for an 

increased streamflow during this period. The calculated range of median change in 

streamflow during 2011-2100 is higher for scenarios in the order of A1B, A2 and B1; it 

varies from 2% to 12%, 1% to 7%, and 4.5% to 7.5% for A1B, A2 and B1 respectively. 
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Figure 4.7  Boxplots of percent change of annual streamflow for each climate emission 
scenario during 2011-2040, 2041-2070 and 2071-2100 (represented here as 2030’s, 

2060’s and 2090’s), with respect to average annual  streamflow for the baseline      
period (1971-2000). 

 

4.3.2.1.2 Non Parametric Test 

The KS–Test is applied for monthly streamflow projections derived by using 112 

climate projections for different emission scenarios. Since all scenarios are holding the 

same time frame for multi-model projections, the KS-Test is suitable to identify if there 

exists any significant difference in streamflow distributions between the scenarios. Using 
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MATLAB software to perform a KS-Test, the result ‘h’ is 1 and ‘p’ value is less than 

0.05, if the test rejects the null hypothesis at 5% significance level. The test statistic ‘k’ 

represents the maximum difference observed between the two cumulative distribution 

functions (cdfs). The test statistics for all performed tests for this analysis are summarized 

in Table 4.2. 

The test is first applied for streamflow projections over the period of 2011-2100 

with respect to the baseline period (1971-2000) separated by emission scenarios.  The 

calculated test statistic is lower than the critical test value. Therefore the null  

hypothesis that the data are coming from same continuous distribution is rejected. The 

test is then applied for streamflow projections over the period of 2011-2100 with respect 

to the baseline period separated by emission scenarios and multi-decadal period (2011-

2040, 2041-2070, 2071-2100). As expected, the null hypothesis is rejected for all cases. 

These tests demonstrate the non-stationarity nature of the future climate. Higher ‘k’ value 

towards the end of this century indicates that the maximum streamflows are simulated 

during 2071-2100 in compared to the earlier periods.  

  The test is then applied for streamflow projections between the scenarios over the 

period of 2011-2100 and for multi-decadal period. The null hypothesis is rejected only 

during 2071-2100 in between A1B and B1, and A2 and B1. This indicates a significant 

difference in streamflow distributions in between these scenarios. A significant increase 

in monthly streamflows for A1B and A2 may be due to higher temperature and 

precipitation for these scenarios when compared with B1 during this period. 

The streamflow distributions for each emission scenario showed temporal 

dependency in the data series with an oscillation pattern and higher autocorrelation 
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Table 4.2 Summary of the results from KS-Test 
 

Streamflow Projections 
Test Statistic 

(k) 
‘p’-Value       
(KS Test) 

h 
‘p’-Value       

(Permutation 
Test) 

Null 
Hypothesis 

A1B 2011-2100 0.18 <0.05 1 <0.05 Rejected 
A1B 2011-2040 0.14 <0.05 1 <0.05 Rejected 
A1B 2041-2070 0.22 <0.05 1 <0.05 Rejected 
A1B 2071-2100 0.25 <0.05 1 <0.05 Rejected 

      
A2 2011-2100 0.19 <0.05 1 <0.05 Rejected 
A2 2011-2040 0.15 <0.05 1 <0.05 Rejected 
A2 2041-2070 0.22 <0.05 1 <0.05 Rejected 
A2 2071-2100 0.28 <0.05  <0.05  

      
B1 2011-2100 0.18 <0.05 1 <0.05 Rejected 
B1 2011-2040 0.13 <0.05 1 <0.05 Rejected 
B1 2041-2070 0.18 <0.05 1 <0.05 Rejected 
B1 2071-2100 0.23 <0.05 1 <0.05 Rejected 

      
A1B and A2 1971-2000 0.02 0.99 0 0.54 Accepted 
A1B and A2 2011-2040 0.03 0.94 0 0.92 Accepted 
A1B and A2 2041-2070 0.05 0.68 0 0.38 Accepted 
A1B and A2 2071-2100 0.05 0.66 0 0.06 Accepted 
A1B and A2 2011-2100 0.01 0.99 0 0.36 Accepted 

      
A1B and B1 1971-2000 0.02 0.99 0 0.50 Accepted 
A1B and B1 2011-2040 0.02 0.99 0 0.91 Accepted 
A1B and B1 2041-2070 0.07 0.21 0 0.18 Accepted 
A1B and B1 2071-2100 0.11 0.01 1 <0.05 Rejected 
A1B and B1 2011-2100 0.04 0.08 0 0.06 Accepted 

      
A2 and B1 1971-2000 0.03 0.99 0 0.25 Accepted 
A2 and B1 2011-2040 0.03 0.99 0 0.62 Accepted 
A2 and B1 2041-2070 0.05 0.62 0 0.16 Accepted 
A2 and B1 2071-2100 0.16 0.01 1 <0.05 Rejected 
A2 and B1 2011-2100 0.04 0.09 0 0.06 Accepted 

 

 

(Figure 4.8a). The random permutation test is applied for all scenarios in Table 4.2 that 

resulted in a separate distribution of test statistic (k) for each test (Figure 4.8b). The bold 

line in Figure 4.8b represents the location of observed test statistic based on sample size. 

The critical ‘p’values for each test are summarized in Table 4.2. The obtained results for 
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null hypothesis from random permutation test is similar to the normal KS-Test, however, 

the lower ‘p’ values from the permutation test demonstrates the temporal dependence of 

the streamflow distributions.     

 

     

Figure 4.8 a) Autocorrelation plot of monthly streamflow from A1B scenario during 
2011-2040; b) Histogram of test statistics (k) from random permutation test of       
monthly streamflows between A1B and A2 scenarios during 2011-2040. The            

middle bold line represents the ‘k’ value based on sample size. 

 

4.3.2.2 Inter-Model Comparison 

The inter-model comparison of simulated changes in streamflows for each 

emission scenario show a wide range of variation when the annual streamflows for future 

periods (2011-2100) are compared with average annual streamflows for the baseline 

period. The calculated change in streamflow varies from -74% and 162% for A1B, -72% 

and 154% for A2, and -65% and 181% for B1 (Figure 4.9). The GCM that simulates the 

maximum change (positive or negative) also varies based on the scenario. The highest 

variation in annual streamflow is simulated by IPSL CM 4.1 for all scenarios; the lowest 

variations are simulated by MIROC 3.2 MEDRES, MIUB ECHO-g, and NCAR CCSM 3 

for A1B, A2, and B1 respectively. The calculated median change in streamflow is very 
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Figure 4.9   Boxplots and probability density function (pdf) plots for inter-model 
comparison of percent change of simulated streamflows, during 2011-2100 with      
respect to 1971-2000, for each emission scenario.Here, 1 to16 represents the 16      
models used for simulation: 1-bccr bcm 2.0.1; 2-cccma cgcm 3; 3-cnrm cm 3.1 ;            

4-csiro mk 3.0.1; 5-gfdl cm 2.0; 6-gfdl cm 2.1; 7-giss model e.r.1; 8-inmcm               
3.0.1;9-ipslcm 4.1; 10-miroc 3.2 medres; 11-miub echo-g;12-mpi echam 5;                   

13-mri cgcm 2.3.2a;14-ncar ccsm 3; 15-ncar pcm 1;16-ukmo hadcm 3.1 
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small for some models although they are showing higher variation within the model. A 

higher median change in streamflow is calculated for CCCMA CGCM3 and NCAR 

PCM1 for all scenarios. 

The distribution of percent changes in annual streamflow for multi-models and 

scenarios are also compared by using projection probability density function (pdf) plot. 

As displayed in Figure 4.9, the pdf plot for each model shows a slight difference in its 

distribution pattern for different emission scenarios. For the same emission scenario, 

some models show changes in annual streamflow for more years compared to others. The 

average distribution represents an average of change in annual streamflow from all model 

projections for each scenario. The calculated range of average distribution varies from -

13% to 27% for A1B, -11% to 23% for A2, and -13% to 22% for B1. The higher 

concentration at zero percent change indicates that the lower emission scenario (B1) 

show changes in annual streamflow for fewer years as compared to A1B and A2; a wider 

distribution for A1B indicates changes in annual streamflow for more years during 2011-

2100. 

The diverse results in streamflow across models and scenarios, which is verified 

by the box plots and pdf plots of multi-model climate projections, is due to the various 

uncertainties resulting from climate models. These uncertainties are associated with the 

type of GCMs, emission scenarios, and climate projections. All climate projections 

possess different climate (meteorological) forcings for the hydrologic model simulation. 

The differences exist because each climate model differs in its origin, processes, physical 

parameterization of land surface processes, as well as in its spatial and temporal 

resolution (Milly et al, 2004). The model simulation capability differs based on 
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resolution. Each model projection also possesses different assumptions for the initial and 

boundary conditions, GHGs emissions, human induced changes, radiation and volcanic 

activity. Thus the processes such as water budget and energy balance differ for different 

warming conditions and causes change in the simulated streamflows. 

4.3.2.3 Monthly Comparison 

The monthly streamflows for each scenario during 2011-40, 2041-70, and 2071-

2100 show larger changes in streamflow with respect to the baseline period. Monthly 

streamflow here represents an average of monthly streamflows from all climate 

projections for each scenario. As shown in Figure 4.10, all scenarios show a continuous 

increase in streamflow for future periods during the months from Oct-May; a maximum 

increase in streamflow is observed for January and February. Summer months (June-

August) show a gradual decrease in streamflow for future periods. A maximum decrease 

in streamflow is observed for July. In general, the simulated change (increase/decrease) is 

maximum for all scenarios during 2071-2100. Almost equal changes are observed in 

monthly streamflows for all scenarios during 2011-40; however, the observed changes 

are higher for A1B and A2 during 2041-70 and 2071-2100 respectively. An exception to 

this is during August when a larger decrease is observed in 2041-70 than 2071-2100 for 

A1B and B1. The mean (in Figure 4.10) represents an average of percent change of 

monthly streamflows from all scenarios. The calculated maximum decrease in monthly 

streamflow between the scenarios is 36%, 49% to 54%, and 55% to 61% (mean 36%, 

52%, 58%) during 2011-40, 2041-70 and 2071-2100 respectively. The calculated 

maximum increase in monthly streamflow between the scenarios varies from 74% to 

77%, 148% to 195%, and 190% to 405% (mean 73%, 176%, 308%) for the same periods.   
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Figure 4.10  Percent change of monthly streamflows for emission scenarios A1B, A2 and 
B1, for each 30- year time period, with respect to baseline period (1971-2100). Mean     

in the plot represents an average of monthly changes observed for all scenarios. 
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September shows a decrease from 2% to 4% until the end of this century. 

The temperature pattern shows a warmer future climate (Figure 4.2). The 

enhanced total precipitation with higher proportion of rainfall than snowfall, increasing 

soil moisture, and higher and earlier spring snowmelt due to warmer temperature may be 

contributing directly to a higher percentage of streamflow during what is typically the 

cold season. The increased warming causes a reduction in snowpack during the winter 

season; this reduction in mountain snowpack reduces surface albedo which causes further 

reduction in winter and late spring snow cover (Leung et al, 2004). The higher snowmelt 

and decline of snow accumulation, and more extreme warming during summer period 

increases sensible heat, which may cause higher evapo-transpiration, reduction of soil 

moisture, and lower streamflows. Summer months further dry making it difficult to meet 

increasing water demands. This indicates that the drier summer months will further dry 

and the wet months will be even wetter under anthropogenically driven climate change 

conditions. Similar results have been documented by Hamlet et al (2005) in a study 

conducted in the Pacific Northwest (PNW). 

4.3.3 Sensitivity of Hydrologic Parameters 

The major soil parameters used during the VIC model calibration are infiltration 

parameter (binf = 0.19), maximum baseflow (Dsmax = 11 mm/day), fraction of Dsmax (Ds = 

0.04), fraction of maximum soil moisture (Ws = 0.15 mm/day), and soil depth (d2= 0.3 

m) (refer to Chapter 3). The sensitivity of hydrologic parameter to streamflow projections 

is studied by selecting the most sensitive parameter during calibration, and developing 

streamflow projections by altering the parameter. The infiltration parameter (binf.) is 

found to be the most sensitive parameter during calibration (Figure 4.11). 
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Figure 4.11  Sensitivity of infiltration parameter ‘b inf’ during the VIC model calibration. 
This was determined by calculating the Pearson Correlation Coefficient (r), Root Mean 

Square Error (RMSE), Bias percentage and Nash-Sutcliffe Efficiency (E). 
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Figure 4.12  Pdf plot of percent change of annual streamflow during 2011-2100 when the 
infiltration parameter (‘binf’ ) is varied from 0.15 to 0.25 for A1B scenario. 

 

In this analysis, all climate projections for A1B scenario are forced into the 

calibrated VIC model and the simulations are carried out by varying the calibrated ‘binf.’ 

by ±20%. Figure 4.12 shows a pdf plot for an average change in annual streamflow 

(2011-2100) for A1B (similar to Figure 4.8) over different values of binf.-0.15, 0.19, and 
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0.25. With respect to these values, a small difference is observed in the distribution range 

of percent change of simulated streamflows. This indicates that the simulated results, 

which are based on multiple climate projections from GCMs, show uncertainty attributed 

to change in the hydrologic parameters for the future climate. 

Uncertainty in a hydrologic model arises when using the same optimized 

parameters for present and future climatic conditions. This ignores the potential  

feedback between the surface and atmospheric processes (Chiew et al, 1995). The change 

of hydrologic parameters for future climate provides an additional uncertainty 

as observed in this analysis, given that the uncertainty attributed to the use of GCM 

outputs (results) is not known perfectly. However, from this analysis it can be assumed 

that the uncertainty attributed to the use of multiple GCM output is very high as 

compared to changes in hydrological parameters. 

 

4.4 Conclusions 

The hydroclimatic modeling approach as presented in this paper can successfully 

incorporate higher resolution climate data (projections) in a process based hydrological 

model for streamflow forecasting. Although previous studies on climate change have 

followed hydroclimatic modeling, the coupling of higher resolution BCSD climate data 

and process based model (VIC) as presented here is not performed. The BCSD climate 

data available from WCRP CMIP3 database can be utilized for similar regional 

hydroclimatic studies. Using this method, streamflow projections are developed based on 

forecasted multi-model multi-scenario climate projections for the North Platte watershed. 

Based on streamflow projections, there is a possibility of increased annual streamflow for 



www.manaraa.com

 101

this region until 2100. An increase in streamflow is predicted for cold seasons while 

projecting a higher reduction during dry seasons. Managing water in this basin under 

anthropogenic climate conditions will be a challenging job when this reduction in 

streamflow during summer periods coincides with the increasing water demand.  

The developed streamflow projections and the range of streamflows can be 

utilized by decision makers in water availability assessment and demand management 

under anthropogenic climate change conditions. The simulated streamflows have shown 

larger variation under changing climatic conditions. This analysis has tried to address 

some of the known uncertainties. However, improvements could be achieved in the 

simulated results if other associated uncertainties (such as perfect GCM, best scenario, 

method of downscaling) can be addressed in future. This research calls for a future work 

that can be performed at a regional scale to test the sensitivity of projected streamflow to 

change in landuse pattern. 
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CHAPTER 5  

IMPACTS OF CLIMATE CHANGE ON EXTREME PRECIPITATION EVENTS 

OVER FLAMINGO TROPICANA WATERSHED, LAS VEGAS, NEVADA 

5.1 Introduction 

The occurrences of extreme storm events are one of the major aspects of climate. 

The increase in the frequency and intensity of extreme rainfall events may cause serious 

impacts on both environmental and human systems in terms of increased frequency and 

severity of floods. For many regions, the frequency and intensity of heavy precipitation 

events have increased in the past 50 years (Frich et al, 2002; IPCC, 2007). Easterling et 

al. (1999) have suggested the higher occurrence of various extremes in the United States 

(U.S.) since the 1970s. The increase in extreme precipitation events is contributing to 

increasing number of days of higher precipitation (>50 mm) and the frequency of 

occurrence of events in the United States (Karl et al., 1996; Karl and Knight 1998). An 

increase of at least 5% in mean summer precipitation is documented in the past century, 

and an increase of 20% of summer daily precipitation is suggested in the future for the 

northern countries (Canada, Norway, Russia, Poland) and mid latitude countries (U.S., 

Mexico, China, Australia) for the same increase in mean summer precipitation (Groisman 

et al, 1999). Under enhanced greenhouse gases (GHGs) conditions, the possibility of 

significant increase in frequency and magnitude of extreme daily precipitation- both at 

global and regional scale- is supported by various studies (Noda and Tokioka, 1989; 

Gordon et al., 1992; Fowler and Hennessey, 1995; Hennessey et al, 1997; Zwiers and 

Kharin, 1998; Groisman et al, 1999; McGuffie, 1999; Kharin and Zwiers, 2000; Cubasch 

et al, 2001; Frich et al, 2002; Milly et al, 2002; Palmer and Ra¨isa¨nen, 2002; Semenov 
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and Bengtsson, 2002; Voss et al, 2002; Fowler and Kilsby, 2003b; Watterson and Dix, 

2003; Wehner, 2004; Meehl et al, 2005; Ra¨isa¨nen, 2005; Goswami et al, 2006). The 

extreme flows are predicted to increase more than the mean flows under different climate 

change conditions (Arnell et al, 2003).  

The evaluation of extreme events requires either use of regional climate models 

(RCMs), high resolution Global Climate Models (GCMs), or downscaling of data to a 

smaller time scale to improve the analysis and accuracy of GCM results (Mearns et al. 

1995; Kim et al, 2002). The use of coarser GCMs in the past century didn’t simulate the 

extreme rainfall events well (Rind et al, 1989; Mearns et al, 1990; Gordon et al. 1992; 

Cubasch et al, 1995; Mearns et al, 1995; Jones et al, 1997; Hennessy et al, 1997; Zwiers 

and Kharin, 1998; McGuffie, 1999; Kharin and Zwiers, 2000). The use of fewer climate 

projections in model simulations also restricted the full range of possible scenarios and 

increased the uncertainty related to future climate change conditions. Some studies have 

utilized the multi-model approach, the multi-scenario approach, or both along with a high 

resolution simulation to address uncertainties of studies related to extreme precipitation 

events (McGuffie et al, 1999; Durman et al, 2001; Jones and Reid, 2001; Ra¨isa¨nen and 

Joelsson, 2001; Palmer and Ra¨isa¨nen, 2002; Prudhomme et al, 2002; Semenov and 

Bengtsson, 2002; Voss et al, 2002; Huntingford et al., 2003; Watterson and Dix, 2003; 

Ekstro¨m et al, 2005; Fowler et al, 2005; Frei et al, 2006; Tebaldi et al, 2006; Beniston et 

al, 2007; Buonomo et al, 2007; Fowler et al, 2007; Dankers and Feyen, 2009; Dankers et 

al, 2009; Fowler and Ekstro¨m, 2009; Kyselý and Beranová, 2009;  Mailhot et al, 2010).  

The changing intensity of extreme storm events, which are likely to occur as 

summer monsoon storms, are found disproportionately larger than changes in 
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precipitation during other seasons (Zwiers and Kharin, 1998; Groisman et al, 1999). 

Based on the results of climate models, the total summer precipitation is expected to less. 

But the increase in intensity and duration of extreme precipitation events is expected in 

most areas (Christensen and Christensen, 2003; Fowler and Kilsby, 2003a). For the few 

studies, the extreme precipitation projections have shown the greatest increase in the 

precipitation intensity for the most intense storms (i.e. extreme short duration storms) 

(Ra¨isa¨nen and Joelsson, 2001; Buonomo et al, 2007). These events could be more 

extreme in arid and semi-arid regions. The response of streamflow to changes in 

precipitation may range from a double in wet and temperate areas to more than 5 times in 

arid areas (Chiew et. al, 1995).  

A proper understanding of the impacts of climate change at a regional scale is 

important for local impact analysis. This paper proposes to answer the following 

question: How would an urban basin respond to the most intense storm under projected 

climate change conditions? The intensity of extreme storms is expected to change under 

anthropogenic climate change conditions. This paper concentrates on the application of a 

hydrologic model, which incorporates downscaled climate information from multiple 

GCMs and multiple scenarios, and examines the potential impacts of climate change on 

extreme storm events. In order to achieve this goal, this study focuses on the semi arid 

watershed areas of southwestern Nevada (such as Las Vegas), where, short duration 

summer storms, which are mostly developed by convective processes and result in 

intense thunderstorms that have caused heavy damage to life and property in the past 

(CCRFCD, 2006). These intense thunderstorms during the summer months are localized. 

A change in intensity of extreme storms under anthropogenic climate conditions could 
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cause a significant hydrological impact (change in peak streamflow and total runoff 

volume) on this region. The direct changes in intense storms and its watershed level 

impact can be utilized to evaluate the performance capacity of existing flood control 

facilities.    

This paper utilizes the Master Plan Update model developed for the Clark County 

Regional Flood Control District. The uncertainties in the climate data are addressed by 

utilizing the bias corrected and spatially downscaled (BCSD) multi-model, multi-scenario 

data from the World Climate Research Programme’s (WCRP’s) Coupled Model Inter-

comparison Project Phase 3 (CMIP3), hosted by Lawrence Livermore National 

Laboratory (LLNL) Program for Climate Model Diagnosis and Intercomparison 

 (PCMDI) (Maurer et al, 2007). The BCSD average monthly temperature and 

precipitation data also addresses the higher resolution data input requirement for the 

evaluation of extreme storm events. The BCSD technique uses statistical downscaling 

method which compares well with other statistical and dynamical downscaling 

approaches (Wood et al., 2004).  

The outline for this paper is arranged as follows. The description of the study 

area, data needs, hydrologic model and major simulations for this analysis are provided in 

Section 5.2; the observed and simulated results are summarized in Section 5.3; a brief 

discussion on shortcomings of the results is provided in Section 5.4, and finally 

concluded in Section 5.5. 
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5.2 Methodology 

5.2.1 Study Area 

The study area is an urban watershed located in Las Vegas, Nevada (Figure 5.1). 

Flamingo-Tropicana (FT) watershed lies at latitude 35.95° to 36.22° N, and longitude 

115.02° to 115.53° W. It has a boundary area of approximately 215 sq. miles and it is one 

of the major tributaries to the Las Vegas Wash which discharges into the Colorado River 

at Lake Mead. The watershed consists of the Flamingo and Tropicana washes, 32 weather 

stations, and two major detention basins. The average yearly rainfall in the Las Vegas 

Valley is 4.49 inches with the most damaging storms occuring between July and 

September due to short duration storms caused by convective processes (CCRFCD, 

2006). 

  

 

 

 
 
 
 
 
 
 
 

 

 

Figure 5.1  Location of the Flamingo Tropicana Watershed in the Las Vegas, Nevada,
 and major washes and weather stations (indicated by filled circles) located inside 

the watershed. 
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5.2.2 Hydrologic Model 

The hydrologic model used in this analysis is the 2008 Flood Control Master Plan 

Update (MPU) model which is developed by the Clark County Regional Flood Control 

District (CCRFCD). The MPU model is utilized by CCRFCD as a major tool for various 

flood management purposes, flood plain regulation, drainage design, and watershed 

management for Clark County, Nevada.  The MPU model uses the Hydrologic Modeling 

Software (HMS) developed by U.S. Army Corps of Engineers Hydrologic Engineering 

Center (HEC). It is a physically based quasi-distributed hydrological model that can 

simulate the rainfall runoff processes for an event based and continuous storm events in a 

watershed.  

The major parts of the HMS model include the basin model, meteorological 

model and control specifications. The basin model represents physical characteristics of a 

watershed, stream network and various hydrological processes such as infiltration, runoff, 

base flow, routing and lakes. The meteorological model creates a boundary condition for 

each sub-basin. The major meteorological parameters include precipitation, evapo-

transpiration and snowmelt. Both recording and non recording gauges are available in the 

watershed. Therefore, the gauge weighting method is selected in the meteorological 

model to spatially distribute precipitation data in the watershed. The control specification 

controls the run of a simulation and start the computation of a hydrograph after rainfall 

starts. The starting and ending date, storm duration, and simulation time steps are 

provided in control specification. In the MPU model, the entire Las Vegas valley is 

divided into nine major watersheds which are discharged into the Las Vegas Wash. All of 

these watersheds are analyzed by developing synthetic storm hydrographs and using 
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other consistent criteria during modeling. The MPU model uses an ultimate condition 

(fully developed), a 100 year design storm, and no base flow, thus contributing higher 

peak flow and volume for the design of flood control facilities.  

5.2.3 Data Description 

The WCRP’s CMIP3 multi-model dataset used in this analysis consists of fine 

spatial resolution (1/8-degree) translations of 112 contemporary climate projections, for 3 

major climate emission scenarios (from IPCC) and 16 robust GCMs for the whole 

contiguous United States. The 3 emission scenarios are categorized as higher (A2, CO2 

concentration ~ 820 parts per million (ppm) by 2100), medium (A1B, CO2 concentration 

~ 700 ppm by 2100), and lower forcing (B1, CO2 concentration ~ 550 ppm by 2100) for 

the multi-model runs. The multi-model dataset consists of average monthly temperature 

and precipitation data for a period of 1950-2100 which are already statistically 

downscaled using BCSD technique (Wood et al, 2004). While using the BCSD method, 

the bias between the GCM monthly data and observed data is corrected using a quantile 

based mapping. The bias corrected temperature and precipitation are then interpolated 

into a finer grid by using additive anomalies for temperature and scaling factor for 

precipitation. 

The historical real time rainfall and water depth data (from 1998-2009) are 

collected from the CCRFCD online database (http://ccrfcd.org/sensordata.htm); these 

data are collected for all 32 stations located inside the watershed. The three types of 

weather stations (precipitation, water level, full weather station) in the watershed measure 

daily precipitation, water level and other meteorological parameters. Based on the 

historical rainfall and water depth data, a number of flood events are identified and 



www.manaraa.com

 109

compared in the study area. An extreme event (for the purpose of this chapter, is defined 

as the 100 year return period event) is selected which represents the most severe 

historical flood event for this area. Other physical characteristics (such as land use, soil 

e.t.c.) of the FT watershed are imported from the MPU model and remain similar during 

this analysis. Land use data is based on the zoning information obtained from the local 

entities in the valley which is categorized into several classes- undeveloped, roads and 

highways, commercial, industrial, residential, park/golf courses, and public land. The Soil 

Conservation Service method is used to classify soils that uses infiltration rates (High-

Soil A, Low-Soil D) as a basis of classification. The mountainous regions of the 

watershed are covered with soil group D while the valley floor has soil type B and C. 

5.2.4 Data Downscaling 

No further spatial downscaling is performed for the average monthly precipitation 

data available in WCRP’s CMIP3 dataset. The temporal downscaling technique as 

described in Wood et al. (2004) is extended to downscale the precipitation data from 

monthly to daily and daily to hourly or real time storm event. Since the analysis is event 

based, the temporal downscaling is performed with respect to the selected storm event. 

Bias in the mean is identified and corrected for monthly simulations. An hourly based 

simulation is performed in this analysis, thus the bias in monthly total precipitation is 

identified and corrected. The scaling factor between the modeled and observed monthly 

total precipitation is applied to observed daily precipitation to obtain modeled daily 

values. A similar procedure is followed to downscale the daily precipitation to real time 

storm event. The scaling factor between the modeled and observed daily precipitation is 

applied to the actual storm to transform it to future climatic conditions.   
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5.2.5 Model Simulations and Analysis 

The hydroclimatic modeling follows three major steps initiated by Bultot et al. 

(1988) and further adopted by most of the climate change studies: selection of a 

hydrologic model; selection of a storm event and scenarios construction; and application 

of constructed scenarios to the hydrologic model. An extreme storm event is selected in 

this research which is different from the synthetic storms used by the MPU model. Only 

the basin components of the MPU model are imported thus creating a custom 

meteorological model and control specifications. The stream networks for the FT 

watershed are the same as the MPU model. Rainfall is considered as a major 

meteorological parameter. The effects of temperature are neglected because its impact on 

runoff is negligible for short duration extreme storm events.  

When comparing the historical floods that occurred in Clark County, Nevada, the 

July 8 1999 storm event represents the most extreme flood event. This storm event had 

exceeded the local criteria for a 100 year flood event and caused a damage of more than 

$20 million (CCRFCD, 2006). During this event, a total rainfall of 1.5 to 3 inches was 

recorded between 60 to 90 minutes at various locations in the Las Vegas valley. This 

storm event is perturbed to future climatic conditions by varying the meteorological 

parameters which is followed by hydrological modeling that simulates the streamflow 

response for various climate scenarios. 

5.2.5.1 Development of Climate Change Scenarios 

The ensemble of climate projections available for 3 emission scenarios from 

WCRP CMIP3 database is utilized to develop future climate scenarios. The average 

monthly output from each emission scenario is used while perturbing the actual storm 
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event to future climatic conditions. During this process, a scaling factor is calculated 

between the modeled and observed monthly precipitation; this is done for the month (July 

1999) when the actual storm event occurred. This factor is applied to modeled monthly 

(July) precipitation for different future time periods that results in an observed monthly 

precipitation for future. The temporal downscaling technique (Wood et al. 2004) as 

discussed above is followed and the change between the two observed dataset (future and 

present) is applied to the actual storm event.  

The scenarios are constructed for each 30-year time period: 2011-2040, 2041-

2070, and 2071-2100. A minimum, average and maximum precipitation for July is 

calculated for each 30-year period; the precipitation here represents yearly average of 

July precipitation from all climate projections for each emission scenario. The difference 

between the modeled and observed precipitation for each time period and scenarios are 

applied to the actual storm event to transform it into the future climatic conditions.  

5.2.5.2 Extreme Value Analysis by Fitting a Distribution 

An extreme value (EV) analysis is performed on the GCM data in order to 

identify any trend in the magnitude of the 100-year precipitation event projected by the 

climate models. Each of 112 climate projections from WCRP CMIP3 database is a 

monthly time series of precipitation (1950 – 2100).  For this analysis, the baseline period 

is identified as 1951 - 2000, while the future projections are analyzed for 1981-2040, 

2011-2070, and 2041-2100 respectively. Therefore, the number of samples used in the 

EV analysis for each period is more than fifty (50). Practically, it is considered that the 

uncertainty in forecasting could be reduced if the forecasting is done for an event that is 
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no more than double the observation years. Therefore, sixty (60) years of data (starting 

backward from 2100) are taken to forecast precipitation for a 100 year design storm.  

  The EV analysis is carried out by fitting each climate projection output to the Log 

Pearson Type III (LP3) distribution, as prescribed by the U.S. Water Resources Council 

(WRC, 1981), using annual maximum (AM) time series. Because the input data is 

measured as a monthly total precipitation, the AM series is the maximum monthly value 

from each year for the analysis period. Based on WRC (1981), the parameters required to 

fit the data to the LP3 distribution are estimated using direct method of moments (MOM).  

For a given data vector x, the log of the values in x are calculated (y = log10 x) followed 

by the mean, µy, standard deviation, σy and skewness, gy of the log values for each time 

period and projection. In each case, a frequency factor (KT) is calculated using a formula 

provided by Kite (1977) which is a function of the desired event return period (T) and the 

skewness of the log values.  The T-year quantile is estimated from a formula proposed by 

Chow (1964), but used in Mays (2005) in the following form: 

                                          T y T yy Kµ σ= +                                      (5.1) 

The magnitude of the T-year event is found by taking the anti-log of this equation: 

                                                   10 Ty
Tx =                                         (5.2) 

Because of the input data, the result of this calculation can be interpreted as the monthly 

rainfall total with a yearly probability of exceedance equal to 1/T.   

In this case the 100 year event is selected as the “design storm” that is being 

projected into the future using data from multiple projections.  Because all of the GCM 

projections from climate emission scenarios (A1B, A2, and B1) are being used 

individually, the result of this analysis will identify a precipitation distribution of 100-
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year events for each projection at four different time periods (1951-2000, 1981-2040, 

2011-2070, and 2041-2100). For each emission scenario, the mean 100-year event 

projected by the climate models is estimated using a bootstrap technique (Efron, 1979; 

1981) with 1000 samples taken with replacement from each group of distributions.  This 

approach provides a 95% confidence interval for the 100-year event for each emission 

scenario and time period. 

The relative growth (ratio) of the 100-yr event is calculated on the mean, 

separately for each emission scenario and time period. The ratio calculation is repeated 

for the upper and lower confidence limits to preserve the GCM uncertainty in the 

streamflow simulations. The growth rate is applied to the actual storm event to transform 

it into the future climatic conditions for different time periods.  

All constructed scenarios are forced into the hydrologic model to observe the 

variation in streamflow for the FT watershed. The storm duration for the actual storm 

event is taken as a reference period during the model simulations. The peak streamflow 

and total runoff volume for the actual storm event is compared with the simulated 

streamflows from different climate scenarios and time periods. 

 

5.3 Climate Observations  

5.3.1 Precipitation Pattern 

The precipitation pattern for each climate emission scenario is compared for 

future time periods. Figure 5.2 displays a 10-year moving average annual precipitation 

during 1950-2100 with both increasing and decreasing patterns for each scenario. 

Although the precipitation magnitudes vary in between the scenarios, the change of  
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Figure 5.2  10-year moving average of total annual precipitation for each emission
 scenario, based on multi-model climate projections from WCRP CMIP3 data,

 during 1950-2100. 
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Figure 5.3  Total cumulative precipitation (measured in inches) for each emission 
scenario during 1971-2000, 2011-40, 2041-70, 2071-2100. 

 
 
direction is similar for most future time periods (except 1995-2000 for A2; 2015-2020 

and 2072-80 for A1B). Average precipitation represents an average of annual 
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precipitation from all scenarios for the last century. A decrease in annual precipitation is 

observed from 2045 until 2070 for B1, 2080 for A1B, and 2090 for A2. Higher 

precipitation is observed at different time periods which varies based on scenario. 

Maximum annual precipitation is observed for B1 during 2035-45 and 2080-2090.  

The total annual precipitation (measured in inches) for each 30-year period shows 

a decrease while moving from 2011-2100. Figure 5.3 shows a maximum decrease in total 

precipitation for higher emission scenarios, similar to A2, A1B and B1. This resembles a 

precipitation pattern for arid regions in the future climate. This implies that the total 

runoff volume may decrease in the future, where B1 shows a lower decrease than A1B 

and A2.  

The average monthly precipitation (measured in inches) during each 30-year 

future period is also compared with the baseline period (1971-2000) for all emission 

scenarios (Figure 5.4). The monthly precipitation shows an increasing pattern during Jan-

Feb and July-Oct (except Sep during 2041-70), while a decreasing pattern is observed for 

other months with a maximum decrease during April-June. The decrease percentage 

varies from 12% to 46% in between the scenarios with a maximum decrease shown by 

A2 during all periods. The summer months (July-August) show a larger increase until 

2100; an increase percentage from 5% to 21% is calculated for different time periods and 

scenarios. In between the scenarios, the increase percentage is higher for A1B during 

2011-40, B1 during 2041-70 and maximum for A2 during 2071-2100. This indicates that 

the summer storm events could be more extreme in the future than at present. 
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Figure 5.4  Change in average monthly precipitation (%) for each emission scenario 
during 30-year future period with respect to 1971 -2000. 
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5.3.2 Temperature Pattern 

The average temperature for the Las Vegas Valley shows an increase for future 

periods when compared with the baseline period (1971-2000). Larger increases in 

temperature are shown by higher emission scenarios similar to A2, A1B and B1 (Figure 

5.5).  While comparing the changes in minimum and maximum temperature, an increase 

in temperature from 0.5 ºC to 5 ºC, 0.15 ºC to 4.5 ºC, and 0.5 ºC to 6 ºC is calculated for 

mean, minimum and maximum temperatures respectively. A2 shows a maximum 

increase in temperature (5 ºC) during 2071-2100. As mentioned earlier, the effects of 

temperature are not considered in this analysis since its impact on runoff is negligible for 

short duration extreme storm events. 
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Figure5.5  Change of average annual temperature for future periods when compared with 
average annual temperature for the baseline period (1971-2000)  for each emission 

scenario (A1B, A2, B1). 
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5.4 Streamflow Projections  

5.4.1 Inter-Model Comparison 

The GCMs output for each emission scenario are utilized to observe the 

streamflow variation in between the GCMs; the actual storm event is perturbed into the 

future based on each GCM output. The actual storm event is adjusted with respect to 

average monthly precipitation (July) during 2011-2100 for each GCM. Figure 5.6 shows 

a larger variation in the simulated peak streamflows and total runoff volume between the 

GCMs for each emission scenario. Based on the ensemble multi-model data (only 6 

model simulations shown here), the highest peak streamflows are simulated by CCCMA 

CGCM 3.1, while the lowest peak streamflows are simulated by GFDL CM 2.0 and 

MIUB ECHO-G for all three scenarios. Differences in the magnitude of peak streamflow 

and total runoff volume are also observed for the same GCM when simulated for 

different scenarios. The differences in simulated streamflows identified between the 

GCMs are mainly due to the type of GCMs, their origin, initial conditions, and boundary 

conditions for each climate projection. When the actual storm is transformed into the 

future climate, the precipitation intensity varies based on the GCM output. Each GCM 

shows only a small shift in the timing of occurrence of peak streamflow for future 

periods. This is due to similar hydrologic conditions and watershed characteristics that 

are used during model simulations for the historical and future climates. Since the 

simulated streamflow shows a very large variation in between the GCMs, an average 

precipitation from all GCMs output for each emission scenario is used to develop future 

climate scenarios. 
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Figure 5.6  Simulated streamflow patterns for different GCMs and emission scenarios, 
when the actual storm event is adjusted with respect to average monthly precipitation 

(July) during 2011-2100 for each GCM. 
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5.4.2 Inter-Scenario and Multi-Decadal Comparison 

5.4.2.1 Based on Ensemble of Climate Projections 

A peak streamflow of 13924.4 cubic foot per second (cfs) and total runoff volume 

of 1791.8 acre foot are obtained, when the simulation is carried out with observed gauge 

data for the actual storm event (July 8 1999). Minimum, average, and maximum 

precipitation for July are calculated for each emission scenario during each 30-year future 

period (2011-40, 2041-70, 2071-2100). Each scenario shows an increase in precipitation 

intensity when the actual storm event is perturbed into the future climatic conditions 

based on average July precipitation. Figure 5.7 shows an increase in peak streamflow for 

all scenarios during each 30-year period up to 2100. Although the simulations are carried 

out for the same time period, a difference exists in the magnitude of peak streamflow in 

between the scenarios. Minimum and maximum peak streamflow are simulated for B1 

during 2011-40 and A2 during 2071-90 respectively; the simulated peak streamflow is 

higher for A2 than A1B and B1 during all time periods. This indicates that the higher 

emission scenario simulates larger peak streamflow for an average change in 

precipitation in future. As discussed in section 5.4.1, no significant shift is observed in 

the timing of occurrence of peak streamflow for future periods. 

The variation in the magnitude of peak streamflow is due to changing 

precipitation intensity for the actual storm event in future. The higher emission of 

greenhouse gases increases temperatures, evaporation rates of surface water and moisture 

holding capacity of the atmosphere. The increase in latent heat due to increasing radiation 

and surface warming causes static instability, deeper convection and vertical motion of 

water vapors (Gordon et al., 1992; Mitchell and Ingram, 1992; Hennessey et al, 1997).  
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Figure 5.7  Streamflow pattern for the extreme storm when the simulations are carried
 out under climate emission scenarios, A1B, A2 and B1, during 2011-2040,     

2041-70, and 2071-2100. 
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The increase in latent heat is balanced by an increase in water vapor which leads to an 

increase in the long wave cooling of the atmosphere. The deeper convection and 

increased water vapor in the atmosphere causes an increase in the precipitation intensity 

as well as the percentage of convective rainfall events.  

Figure 5.8 shows a higher range of increase or decrease in peak streamflow and 

total runoff volume between the scenarios, when simulated for minimum and maximum 

July precipitation for future periods. The simulated peak streamflow and total runoff 

volume range from a decrease of 30 % to an increase of more than 150% with respect to 

the actual storm. As noted earlier, for an average July precipitation, a larger increase in 

streamflow is simulated for A2 during all future periods; it varies from 40% to 75% for 

peak streamflow and 30% to 65% for total runoff volume. An increase from 85% to 

183% in peak streamflow and 70% to 146% in total runoff volume is simulated for the 

scenarios based on maximum July precipitation. A1B, B1, and A2 show larger increase 

during 2011-40, 2041-70, and 2071-2100 respectively. This agrees with the summer 

months (July-August) precipitation pattern followed by the scenarios during these time 

periods (Figure 5.4). A decrease from 5% to 34% in peak streamflow and 4% to 31% in 

total runoff volume is simulated for the scenarios based on minimum July precipitation. 

For these scenarios, A1B shows a larger decrease during 2011-40 and 2041-70, A2 

during 2071-2100, and B1 during 2011-40 and 2071-2100; B1 shows a maximum 

decrease during 2071-2100. 
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Figure 5.8  Percent change of peak runoff (left) and total runoff volume (right) for the 
extreme storm when the simulations are carried out for minimum, average and   

maximum change of precipitation for emission scenarios (A1B, A2 and B1)              
during each 30-year future time periods. 
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5.4.2.2 Extreme Value Analysis by Fitting a Distribution 

Figure 5.9 shows a range of precipitation during the baseline period (1951-2000) 

and future periods for all emission scenarios. This precipitation represents the 

precipitation for a 100-year design storm. The lower dot and upper dot in the box plot 

represents lower 5% and upper 95% precipitation values. The calculated range of 

precipitation is almost equal for all scenarios during 1951-2000. An increasing 

precipitation pattern is observed for all scenarios over this century which is similar to the 

pattern shown by the summer months in Figure 4. Maximum precipitation is calculated 

for the higher emission scenario (A2) during 2041-2100. However, the calculated range 

of precipitation is similar for A1B and B1 during this period. This relative growth in 

precipitation, which is calculated from the modeled output for the baseline and future 

period, is applied to the actual storm event to transform it into the future climate. All 

scenarios developed for the mean and its confidence interval for future periods are forced 

into the MPU model to assess the impact on streamflow. 

  

A1B

Time Period

Baseline 2030's 2060's 2090's

M
on

th
ly

 P
re

ci
pi

ta
tio

n 
(in

)

4

5

6

7

8

9

A2

Time Period

Baseline 2030's 2060's 2090's

M
on

th
ly

 P
re

ci
pi

ta
tio

n 
(i

n)

4

5

6

7

8

9

 

B1

Time Period

Baseline 2030's 2060's 2090's

M
on

th
ly

 P
re

ci
pi

ta
tio

n 
(i

n)

4

5

6

7

8

9

 

Figure 5.9  Range of modeled maximum monthly precipitation (measured in inches) for 
different periods and emission scenarios. The lower and upper dots in the box plot 

represent the lower 5% and upper 95% precipitation values  (1951-2000,                   
1981-2040, 2011-2070, and 2041-2100 represented as baseline, 2030’s,                  

2060’s and 2090’s). 
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Figure 5.10 shows the change in peak streamflow and total runoff volume for all 

scenarios during 1981-2040, 2011-2070, and 2041-2100 (represented as 2030’s, 2060’s, 

and 2090’s) with respect to the baseline period (1951-2000). The average change in peak 

streamflow and total runoff volume is represented by the middle values while its 

confidence intervals (upper 95th and lower 5th percentile) are represented by the upper and 

lower values. Both peak streamflow and total runoff volume show an increasing pattern 

for all scenarios similar to the precipitation pattern for 100-year design storm. While 

considering all scenarios and an average change in precipitation, the peak streamflow 

shows an increase from 41% to 50%, 58% to 61%, and 83% to 90% during 1981-2040, 

2011-2070, and 2041-2100 respectively. When the lower and upper percentile changes 

are considered, the increase percentage is larger for A2 during 2041-2100 that varies 

from 71% to 109%; this increase percentage is larger for A1B during 1981-2040 and 

2011-2070 which varies from 44% to 55% and 51% to 72% respectively. While 

considering all scenarios and an average change in precipitation, the total runoff volume 

shows an increase from 36% to 42%, 50% to 52%, and 69% to 74% during 1981-2040, 

2011-2070, and 2041-2100 respectively; however, this range varies from 30% to 90% 

when the lower and upper percentile changes are considered. 

                                         

5.5 Discussion 

This analysis has followed two different approaches which possess different 

assumptions and limitations. The first approach utilized data from the CCRFCD 

established weather stations in the watershed and average precipitation data from all 

climate projections for each climate emission scenario. The range of percent change  
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Figure 5.10  Percent change of peak runoff (left) and total runoff volume (right) for the 
extreme storm when the simulations are carried out for lower 5%, mean, and upper    
95% change of precipitation for 30-year time periods (1981-2040, 2011-2070, and    
2041-2100 represented as 2030’s, 2060’s and 2090’s) for each  emission scenario. 
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(max, average, and min) of streamflow is calculated with this method. The second  

approach utilized only GCM output to calculate relative change in current and future 

precipitation for a 100-year design storm, and apply that change to adjust the actual storm 

event. The annual maximum values are used by this method; therefore, this method is 

applicable to analyses focusing on maximum flows. Both approaches have shown a very 

high degree of change in peak streamflow and total runoff volume for the actual storm 

event until 2100. Higher emission scenario has shown larger changes at the end of this 

century. This represents the nature of extreme storm events in a changing future climate. 

However it should be realized that these results are limited to the ensemble of multi-

model climate projections from WCRP CMIP3 dataset and the performance capacity of 

MPU model to simulate the future climate. 

None of the multi-models could be categorized as more accurate as all of them 

follow some assumptions, limitations, and different levels of details intended for specific 

applications. The choice of multi-model and focus on mean climate in this analysis is 

assumed to provide a more reliable estimate of the future uncertainty. Additional analysis 

based on 100-year design storm and confidence interval also addresses the uncertainties 

associated with the impact studies related to extreme storm events. The simulated 

streamflow in this analysis represent streamflow from a fully developed watershed as 

assumed by the MPU model. Some sources of uncertainty can be attributed to the use of 

climate data and station data, and downscaling methods adopted in this analysis. The 

locally measured station data used for all stations in the watershed could be affected by 

many microclimatological effects (Osborn and Hulme, 1997). The downscaling method 

used in this analysis only considers the change in rainfall intensity for a future climate. 
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Therefore, land use, watershed characteristics, and variability of the extreme events 

remain constant. The use of other downscaling techniques may add some changes in the 

simulated results. 

 

5.6 Conclusions 

This paper has demonstrated the compatibility of a hydrologic model with higher 

resolution climate data (scenarios) incorporated to quantify the watershed level impacts 

of extreme storm events under anthropogenic climate change conditions. A methodology 

has been developed that examines the future climate and evaluates its impact in terms of 

corresponding changes in peak streamflow and total runoff volume. This paper has also 

addressed the hydrological impacts due to a 100-yr return period storm under changing 

climatic condition. The BCSD multi-model data used in this paper as a requirement of 

higher resolution data can be utilized for regional hydroclimatic studies.  

The ensemble multi-model data has shown a warmer future climate and a 

decrease in total annual precipitation for each 30-year period up to 2100. The summer 

storms, which are considered as extreme storms, are expected to be more intense in 

future. The simulated maximum change in peak streamflow and total runoff volume 

ranges from 40% to more than 150% for the projected extreme storm over this century. 

The predicted peak streamflow for intense storms helps to evaluate the vulnerability of 

existing flood control facilities under anthropogenic climate change conditions. This 

methodology can be utilized to design a flood management tool in the Flamingo-

Tropicana watershed and mitigate runoff impacts of intense storms under changing 

climatic conditions. Future work can be extended to a wider scale to identify the impacts 
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of event based changes on entire Las Vegas watersheds. Similar hydroclimatic studies 

can be carried out with different set of climate data, storm event, hydrologic model, and 

downscaling methods to increase reliability on the results obtained from this research. 
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CHAPTER 6  

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions and Contributions 

The research presented in this study contributes to the field of water resources 

engineering related to weather modification (WM), climate change and hydrology. This 

includes how WM programs and climate change impact the hydrologic characteristics of 

a non-urban watershed, and how future climate impacts extreme storm events of an urban 

watershed in the western United States. 

6.1.1 Research Question #1 (Task 1) 

In answering Research Question 1, a hydrologic model was developed (within 

VIC) to evaluate the impacts of WM programs on water supply. This part of research 

provided a proof of concept of development and application of WM scenarios for 

hydrologic impact evaluation. Prior to this research, no hydrologic model was developed 

and utilized for impact studies relating to WM operations in the North Platte watershed. 

The VIC model was utilized for various purposes in the watershed. A number of WM 

scenarios were developed and forced into the VIC model to quantify the impacts of 

increased precipitation on streamflow, and identify the suitable regions for cloud seeding 

within the watershed. The hypothesis that the anticipated increase in precipitation could 

augment annual and seasonal streamflow and reduce the impact during dry periods is 

confirmed. The centralwest and southwest regions of the watershed, which consists of 

higher percent coverage of woodland and evergreen broadleaf forest, were found more 

effective for cloud seeding operations. The present cloud seeding operations are focused 

on the central regions of the watershed. Based on increased streamflow, the extension of 
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these operations can be recommended in the southern regions of the watershed. This 

analysis examined the WM impact on streamflow for a range of increased precipitation in 

the watershed. For the proposed WM programs or programs that are claimed effective 

based on precipitation augmentation, the impacts on water availability can be predicted 

based on this analysis. The results presented here can also be utilized directly by the WM 

projects operating at representative watersheds.   

6.1.2 Research Question #2 (Task 2) 

In answering Research Question 2, a methodology was developed that incorporate 

downscaled climate data (projections) into a hydrologic model and derive streamflow 

projections to evaluate the potential impacts of climate change on water availability. The 

hypothesis that the higher resolution climate data and process based model can be utilized 

for streamflow forecasting and water availability assessment under changing climatic 

conditions is confirmed. The ‘bias corrected and spatially disaggregated’ (BCSD) multi-

model data that was used as a requirement of higher resolution daily input for the VIC 

model can be utilized in similar regional hydroclimatic studies. Using this method, 

streamflow projections were developed based on forecasted multi-model multi-scenario 

climate projections for the North Platte watershed under anthropogenic climate change 

conditions. Based on the ensemble of streamflow projections, there is a possibility of 

increased annual streamflow for this region until 2100. An increase in streamflow was 

predicted for cold seasons, while projecting a higher reduction during dry seasons. 

Managing water in this basin under anthropogenic climate change conditions could be a 

challenging job, when this reduction in streamflow during summer periods coincides with 

increasing water demand. Prior to this research, no studies were carried out related to 
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long-term quantitative assessment of water availability in this basin. The streamflow 

projections and the range of streamflow can be utilized by decision makers in water 

demand management under changing climatic conditions.  

The above analyses accessed water availability in the North Platte watershed 

under operational WM programs and anthropogenic climate change conditions. For an 

anticipated increase in precipitation, the WM programs are expected to increase 

streamflow during summer periods (June-August). Based on forecasted streamflow, the 

summer months are expected to get reduced streamflow, while the winter months are 

expected to get increased streamflow. It is not fully known at present whether an increase 

in streamflow (due to climate change and WM operations) could mitigate the combined 

impacts of reduced streamflow (during dry periods) and increasing water demand. With a 

known future water demand and an actual evaluation of the operational WM programs, it 

might be easier to conclude a more viable option- the storage of additional water during 

other periods and utilization during dry periods, an effective implementation of WM 

programs, or both. 

6.1.3 Research Question #3 (Task 3) 

In answering Research Question 3, a hydrological modeling approach was utilized 

that simulates an urban basin response to the most intense storm under anthropogenic 

climate change conditions. A methodology was developed that examines the future 

climate and corresponding changes in streamflow to quantify the watershed level 

hydrological impacts of extreme storm events under changing climatic conditions. Few 

studies (most from Europe) are available at present regarding short duration extreme 

events. This research performed an event based simulation for shorter duration storms in 
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the Flamingo Tropicana (FT) watershed in Las Vegas, Nevada. The multi-model multi-

scenario BCSD data was utilized as a requirement of higher resolution data for impact 

studies on extreme storm events. The total annual precipitation for each 30-year period 

showed a continuous decrease from 2011-2100; this resembles a precipitation pattern for 

arid regions in the future climate. However, the summer storms, which are considered as 

extreme storms, were found to be more intense in the future. The simulated peak 

streamflow and total runoff volume showed an increase from 40% to more than 150% 

over this century. The hypothesis that the extreme storms could be more intense in future 

in arid urban areas and contribute for higher impacts on streamflow is confirmed. Based 

on the MPU report, the drainage facilities that are available at present in the major 

watersheds of Las Vegas are not able to fully convey the 100-year design flow. The 

outlook of these changes as a result of more intense storms under anthropogenic climate 

change conditions could be helpful in evaluating the vulnerability of existing flood 

control system. These results can be utilized for various design purposes in the watershed 

to mitigate runoff impacts of intense storms under changing climatic conditions. 

Some sources of uncertainty in this research are attributed to the use of hydrologic 

models, climate data and station data, and downscaling methods adopted in this analysis. 

Uncertainty in a hydrologic model may arise when using the same optimized parameters 

for present and future climatic conditions. The measured station data (e.g. 

meteorological, streamflow) that are used during calibration, validation, and all other 

simulations in a hydrologic model are likely affected by many microclimatological 

effects (Osborn and Hulme 1997). The temporal downscaling method used in this 

analysis only considers the change in rainfall intensity for a future climate. Therefore, 
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land use, watershed characteristics, and variability of the extreme events remain constant. 

These results are limited to the ensemble of multi-model climate projections from WCRP 

CMIP3 dataset and the performance capacity of hydrologic models to simulate the future 

climate. These uncertainties could lower our confidence to some extent while concluding 

the reliability of the simulated results from this research. However, improvements could 

be achieved in the simulated results if associated uncertainties (such as perfect GCM, best 

scenario, method of downscaling) can be addressed in future. 

This research developed methodologies for both long-term and event-based 

simulation to observe the potential impacts of human induced climate change on existing 

water resources in arid regions of the western United States. The methodology as well as 

hydrological models and higher resolution climate data used in this research can be 

utilized for other regional hydroclimatic studies. Although various uncertainties are 

associated with WM and climate related studies, these results can be utilized by water 

managers in regional water resources development and management. 

  

6.2 Recommendations for Future Research 

6.2.1 Extension of Present Research 

For Task 1, more “what if” WM scenarios (such as impact of landcover from each 

region) can be carried out to observe the impacts on streamflow. Since the Colorado 

range is a future region of interest for cloud seeding operations, the impacts on 

streamflow can be evaluated for the entire North Platte watershed for a range of increased 

precipitation. Further, the impacts of WM on other hydrologic parameters such as evapo-

transpiration, soil moisture, and snow water equivalent can be estimated. The routing 
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model of the VIC can be utilized for more precise observations of daily or sub-daily 

changes in streamflow. For Task 2, other downscaling techniques can be adopted to 

prepare the VIC daily input data from monthly meteorological data, and the results can be 

compared with those obtained from this research. For Task 3, calibration of the MPU 

(HEC-HMS) model as well as consideration of other hydrologic components (such as 

baseflow and local flows) may increase reliability on the simulated results. Further 

studies can be carried out with different set of climate data, storm event, hydrologic 

model, and downscaling methods, and the results can be compared with those obtained 

from the MPU model. 

6.2.2 Other Future Studies 

This research provides a basis for several other studies in the field of water 

resources engineering. Some of the recommendations for further study include, but not 

limited to, the following:  

• Evaluation of the operational cloud seeding program can be carried out based on 

actual field observations, in this case, with respect to measured precipitation at 

SNOTEL stations. The actual increase in precipitation can be forced into the VIC 

model to quantify changes in water supply for the watershed. The comparison of 

actual observations and the simulated results may be helpful in estimating the 

uncertainties attributed to WM programs. A study on future water demand can be 

performed and linked with the effects of operational WM programs in the watershed. 

Additionally a cost benefit analysis can be carried out for these operations to 

conclude the programs to be financially significant. Similar impact studies can be 
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carried out for other operational or proposed WM programs by utilizing the methods 

presented in this research.  

• Most uncertainties in climate related studies are attributed to the use of GCM output. 

An analysis that evaluates the uncertainty of GCM outputs may be helpful in drawing 

better conclusions for future predictability of hydroclimatic changes. Building upon 

the current research, future work can be performed at a regional scale to test the 

sensitivity of projected streamflow to changes in climate as well as landuse pattern. 

Streamflow projections can be developed for different emission scenarios by varying 

other model parameters to estimate their uncertainty under changing climatic 

conditions. 

• The study related to impacts of climate change on extreme storm events can be 

extended to a wider scale covering the whole Las Vegas watersheds, and other arid or 

semi arid regions. These results can be utilized in identifying the storage capacity 

required for the watershed under changing climatic conditions. Additional research 

can be carried out that determines the impact of extreme storm events on storm water 

quality under changing climatic conditions. 
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APPENDIX A 

DATA FOR VIC MODEL 

(TASK 1, 2) 
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A.1.1 Important Features of Variable Infiltration Capacity Model 
 

The important features inside the Variable Infiltration Capacity (VIC) model that 

are briefly discussed here is available online (http://www.hydro.washington.edu 

/Lettenmaier/Models/VIC). The most sensitive parameters in the VIC model are related 

to soil parameters. Two important features of the VIC model incorporate sub grid 

variability in soil moisture storage capacity and representation of drainage from the lower 

soil moisture zone. The two major curves are variable infiltration curve and baseflow 

curve. The infiltration curve accounts for sub-grid variability in infiltration and relates the 

infiltration with the fraction of saturated area of soil. The baseflow curve relates baseflow 

with soil moisture and represents baseflow as a non-linear recession.  

The VIC model considers sub-grid variability in land surface vegetation 

processes, precipitation, topography (using elevation band), atmospheric processes, and 

soil moisture storage capacity as a spatial probability distribution. Elevation bands are 

used for more accurate estimation of mountain snowpack. All areas of same elevation 

range are included in one band, and fluxes and storages from each band are averaged 

together. Surface runoff is generated when additional precipitation to soil moisture 

storage at the end of the previous time step exceeds the storage capacity of the soil. The 

formulations that are used for surface and subsurface runoff are the Xinanjiang model 

and Arno non-linear baseflow respectively. The total evaporation is the sum of 

evaporation from canopy layer and bare soil layer, transpiration from vegetation classes, 

and snow sublimation. Newer versions of the VIC model incorporate several other 

models- snow model, routing model, excess ice and subsidence model, and lake 

(wetland) model. The snow algorithm inside the VIC model considers spatially 
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distributed snow coverage (ground snowpack, snow in vegetation canopy, snow on top of 

lake ice) and blowing snow sublimation. Other important features that are included in the 

VIC model are pointed out as follows: 

• Land atmosphere exchange of  moisture and energy 

• No dataset allow an evaluation of interaction of water balance components over 

large regions for longer periods as in the VIC model. 

• Sub-grid parameterization of the effects of spatial variability in soils, topography, 

and vegetation. Represent the non linear soil moisture dependence of the 

partitioning of precipitation into direct runoff and infiltration. 

• VIC 4.0.1 and later versions can consider canopy energy balance separately from 

ground surface. They can simulate spatially distributed (laterally) soil freezing, 

frozen soil and permafrost processes (such as melting of excess ground ice), snow 

coverage and snow sublimation. 
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Table A1 Name of SNOTEL and stream gauge stations and their location in the North 
Platte Watershed. 
 

Name of 
SNOTEL 
stations 

Station 
ID 

Number Latitude Longitude Elevation State 

Columbine 06J03S 408 40.3833 -106.6000 9160 Colorado 
DividePeak 07H05S 449 41.3000 -107.1500 8880 Wyoming 
JoeWrite 05J37S 551 40.5167 -105.8833 10120 Colorado 
NorthFork 
FrenchCreek 

06H20S 668 41.3167 -106.3667 10130 Wyoming 

OldBattle 06H10S 673 41.1500 -106.9667 10000 Wyoming 
SouthBrushCreek 06H19S 772 41.3167 -106.5000 8440 Wyoming 
Tower 06J29S 825 40.5333 -106.6667 10500 Colorado 
Webber Springs 06hH09S 852 41.1500 -106.9167 9250 Wyoming 

 
Name of Stream gauge 
Stations 

Station 
ID 

Number Latitude Longitude State 

Michigan river near 
cameron pass 

6614800 4809 40.50 -105.87 CO 

North Plate river near 
Northgate 

6620000 4810 40.94 -106.34 CO 

Encampment River AB 
Hog Park CR 

6623800 4812 41.02 -106.82 WY 

Encampment River at 
mouth near Encampment 

6625000 4813 41.30 -106.72 WY 

North brush creek near 
Saratoga 

6622700 4811 41.37 -106.52 WY 

N Plate River AB 
Seminoe Reservoir, NR 
Sinclair 

6630000 4814 41.87 -107.06 WY 
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Figure A1. Sensitivity of VIC calibrated parameters (binf: infiltration parameter) 
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Figure A1  Sensitivity of VIC calibrated parameters (binf: infiltration parameter, d2: soil 
depth, Dmax: maximum baseflow, Ds: fraction of Dmax, Ws: fraction of maximum         

soil moisture) 
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Table A2 Grids located in the North Platte watershed                                            
 

Grids considered for North Platte watershed 
Latitude Longitude Latitude Longitude Latitude Longitude 
40.3125 -105.94 40.9375 -106.19 41.4375 -107.06 
40.3125 -106.06 40.9375 -106.31 41.4375 -107.19 
40.3125 -106.19 40.9375 -106.44 41.4375 -107.31 
40.3125 -106.31 40.9375 -106.56 41.5625 -106.44 
40.3125 -106.44 40.9375 -106.69 41.5625 -106.56 
40.4375 -105.81 40.9375 -106.81 41.5625 -106.69 
40.4375 -105.94 41.0625 -106.19 41.5625 -106.81 
40.4375 -106.06 41.0625 -106.31 41.5625 -106.94 
40.4375 -106.19 41.0625 -106.44 41.5625 -107.06 
40.4375 -106.31 41.0625 -106.56 41.5625 -107.19 
40.4375 -106.44 41.0625 -106.69 41.5625 -107.31 
40.4375 -106.56 41.0625 -106.81 41.5625 -107.44 
40.4375 -106.69 41.0625 -106.94 41.6875 -106.56 
40.5625 -105.81 41.1875 -106.19 41.6875 -106.69 
40.5625 -105.94 41.1875 -106.31 41.6875 -106.81 
40.5625 -106.06 41.1875 -106.44 41.6875 -106.94 
40.5625 -106.19 41.1875 -106.56 41.6875 -107.06 
40.5625 -106.31 41.1875 -106.69 41.6875 -107.19 
40.5625 -106.44 41.1875 -106.81 41.6875 -107.31 
40.5625 -106.56 41.1875 -106.94 41.8125 -106.44 
40.5625 -106.69 41.1875 -107.06 41.8125 -106.56 
40.6875 -105.94 41.3125 -106.31 41.8125 -106.69 
40.6875 -106.06 41.3125 -106.44 41.8125 -106.81 
40.6875 -106.19 41.3125 -106.56 41.8125 -106.94 
40.6875 -106.31 41.3125 -106.69 41.8125 -107.06 
40.6875 -106.44 41.3125 -106.81 41.8125 -107.19 
40.6875 -106.56 41.3125 -106.94 41.8125 -107.31 
40.6875 -106.69 41.3125 -107.06 41.9375 -106.94 
40.8125 -106.06 41.3125 -107.19 41.9375 -107.06 
40.8125 -106.19 41.4375 -106.44   
40.8125 -106.31 41.4375 -106.56   
40.8125 -106.44 41.4375 -106.69   
40.8125 -106.56 41.4375 -106.81   
40.8125 -106.69 41.4375 -106.94     
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Table A3 Monthly streamflow (in acre foot): Modeled (Qm) vs. Observed (Qo) 
Year  Month  Qm Qo Year  Month   Qm Qo 
1950 1 6382.79 16890.64 1954 9 59032.77 7747.44 
1950 2 4740.48 19010.38 1954 10 48169.81 18962.78 
1950 3 9006.21 26052.30 1954 11 16793.69 17244.30 
1950 4 166149.60 91636.36 1954 12 1857.85 17357.95 
1950 5 200350.74 172903.14 1955 1 384.31 13847.01 
1950 6 272577.58 320786.78 1955 2 366.22 11801.65 
1950 7 103033.99 87435.37 1955 3 5090.13 15949.88 
1950 8 8986.37 22332.30 1955 4 69031.89 61527.27 
1950 9 93871.98 22575.87 1955 5 120561.78 93522.64 
1950 10 18346.37 23242.31 1955 6 131163.86 112462.81 
1950 11 23076.35 25205.95 1955 7 47930.47 18956.63 
1950 12 5645.43 25640.33 1955 8 59802.14 25455.87 
1951 1 1097.83 19460.83 1955 9 10012.51 7289.26 
1951 2 4222.93 18543.87 1955 10 15662.83 10803.37 
1951 3 5634.23 25007.01 1955 11 7101.72 16792.07 
1951 4 89149.55 66763.64 1955 12 19188.91 16601.65 
1951 5 296700.36 194608.26 1956 1 3763.02 17536.26 
1951 6 172512.59 275444.63 1956 2 286.75 14900.63 
1951 7 234311.64 96781.49 1956 3 31094.10 31616.93 
1951 8 71603.51 41743.93 1956 4 81680.09 92885.95 
1951 9 11677.64 17268.10 1956 5 346388.10 226151.41 
1951 10 106874.42 32483.90 1956 6 291418.88 209157.02 
1951 11 7755.51 25443.97 1956 7 107484.71 35730.45 
1951 12 1384.03 23303.80 1956 8 32283.77 23691.17 
1952 1 492.27 22701.22 1956 9 1193.45 6961.98 
1952 2 468.30 20854.21 1956 10 15640.31 9641.26 
1952 3 1821.33 26556.50 1956 11 5316.13 14489.26 
1952 4 148239.92 181190.08 1956 12 4395.16 16441.79 
1952 5 300031.84 369110.08 1957 1 46.01 14898.45 
1952 6 484111.80 419861.16 1957 2 3898.95 17832.99 
1952 7 208844.24 68558.68 1957 3 17175.79 27460.36 
1952 8 49973.48 38884.76 1957 4 65141.39 66882.64 
1952 9 4072.41 19178.18 1957 5 351673.12 224983.14 
1952 10 750.51 13496.53 1957 6 402786.87 518221.49 
1952 11 1776.91 14263.14 1957 7 415382.39 308852.23 
1952 12 546.79 13871.60 1957 8 56767.84 65914.71 
1953 1 4968.28 21643.64 1957 9 13500.36 27520.66 
1953 2 1224.76 19576.86 1957 10 67277.36 31653.82 
1953 3 27982.69 28069.09 1957 11 9484.16 28121.65 
1953 4 102768.07 47234.38 1957 12 1635.13 24416.73 
1953 5 162410.72 76552.07 1958 1 148.76 19460.83 
1953 6 247208.04 237064.46 1958 2 7330.29 22492.56 
1953 7 72018.03 41713.19 1958 3 7767.95 34205.55 
1953 8 46521.04 34285.49 1958 4 63322.24 66168.60 
1953 9 5809.49 9984.79 1958 5 277904.24 280014.55 
1953 10 11260.16 11147.70 1958 6 146468.22 238016.53 
1953 11 28141.90 18862.81 1958 7 28048.86 33418.51 
1953 12 798.11 15156.69 1958 8 26530.38 16054.41 
1954 1 2684.28 16085.16 1958 9 27932.33 9966.94 
1954 2 7183.89 17155.44 1958 10 1246.40 13668.69 
1954 3 7381.12 23795.70 1958 11 10910.49 17160.99 
1954 4 141511.44 63431.40 1958 12 3387.12 21619.04 
1954 5 176690.56 88849.59 1959 1 1738.43 17819.11 
1954 6 70115.25 49394.38 1959 2 449.12 15661.49 
1954 7 32493.51 16841.45 1959 3 6240.30 19534.61 
1954 8 26749.48 9819.57 1959 4 101354.60 56885.95 
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Year  Month  Qm Qo Year  Month   Qm Qo 
1970 1 3574.19 21231.67 1974 9 26580.74 14816.53 
1970 2 2636.54 22375.93 1974 10 50003.15 22879.54 
1970 3 3675.16 26931.57 1974 11 4241.13 25438.02 
1970 4 56486.95 64919.01 1974 12 728.41 21151.74 
1970 5 333491.19 264519.67 1968 9 23751.67 21486.94 
1970 6 276277.43 408555.37 1968 10 39235.22 27780.10 
1970 7 112128.05 138162.64 1968 11 7394.00 26830.41 
1970 8 44794.29 38872.46 1968 12 2304.54 25050.05 
1970 9 62820.93 30418.51 1969 1 8235.59 27251.31 
1970 10 65070.51 36886.41 1969 2 949.42 20371.04 
1970 11 27364.99 33530.58 1969 3 10891.87 23150.08 
1970 12 1119.52 25480.46 1969 4 173676.09 117699.17 
1971 1 8467.12 22510.61 1969 5 272257.98 205491.57 
1971 2 2854.85 25985.85 1969 6 206301.04 213441.32 
1971 3 26215.64 52731.77 1969 7 66386.25 76244.63 
1971 4 106081.10 146558.68 1969 8 15607.71 23051.70 
1971 5 223644.55 231377.85 1969 9 23229.93 12894.55 
1971 6 267066.60 461633.06 1969 10 55071.97 30682.31 
1971 7 121544.13 140007.27 1969 11 17313.35 31186.12 
1971 8 13879.80 37353.72 1969 12 3849.28 22246.21 
1971 9 33241.14 28770.25 1975 1 1676.65 17720.73 
1971 10 19145.72 29052.89 1975 2 1068.31 16938.84 
1971 11 12803.64 28716.69 1975 3 20737.59 22744.26 
1971 12 10365.89 30344.13 1975 4 93902.86 62657.85 
1972 1 1330.67 21102.55 1975 5 217306.61 166938.84 
1972 2 6713.87 23170.12 1975 6 181739.40 295795.04 
1972 3 62422.52 50764.17 1975 7 184466.81 203708.43 
1972 4 86618.69 51542.48 1975 8 24592.91 41879.21 
1972 5 170027.99 120515.70 1975 9 15622.41 18023.80 
1972 6 174290.49 269137.19 1975 10 37335.28 21409.98 
1972 7 21683.06 37716.50 1975 11 14927.48 24224.13 
1972 8 21819.45 15476.43 1975 12 7204.77 15125.95 
1972 9 38035.12 16774.21 1976 1 1024.45 18415.54 
1972 10 106879.24 29538.64 1976 2 10654.56 20704.26 
1972 11 3997.71 30436.36 1976 3 8399.80 24096.99 
1972 12 3260.62 22990.21 1976 4 78542.69 68310.74 
1973 1 4170.88 21760.46 1976 5 238946.00 154887.27 
1973 2 222.72 19637.95 1976 6 168028.50 195709.09 
1973 3 1794.85 31038.94 1976 7 73055.33 76060.17 
1973 4 95753.63 98360.33 1976 8 26189.67 33523.04 
1973 5 394833.67 354168.60 1976 9 26408.14 15804.30 
1973 6 321867.47 325011.57 1976 10 7996.88 17800.66 
1973 7 210720.41 137055.87 1976 11 1511.80 19017.52 
1973 8 19284.14 47333.16 1976 12 651.13 16945.98 
1973 9 55004.37 22397.36 1977 1 694.62 11848.66 
1973 10 11107.30 23955.57 1977 2 3674.26 12884.63 
1973 11 60481.02 31989.42 1977 3 9684.27 18606.15 
1973 12 6769.47 20844.30 1977 4 143362.52 42979.83 
1974 1 10756.11 21164.03 1977 5 289165.65 91309.09 
1974 2 886.05 20826.45 1977 6 57148.61 79914.05 
1974 3 55056.63 51852.50 1977 7 52940.39 16718.48 
1974 4 103645.59 112879.34 1977 8 63211.58 14634.05 
1974 5 254041.71 330311.41 1977 9 20517.57 10948.76 
1974 6 297062.55 352026.45 1977 10 36196.12 14197.49 
1974 7 133881.57 76675.04 1977 11 5061.90 16000.66 
1974 8 10481.39 28228.96 1977 12 3030.63 20309.36 
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Year  Month  Qm Qo Year  Month   Qm Qo 
1978 1 297.76 21379.24 1982 9 85671.24 33262.81 
1978 2 1749.77 18210.64 1982 10 29379.78 43010.58 
1978 3 70333.11 27380.43 1982 11 4770.51 35268.10 
1978 4 87326.62 65811.57 1982 12 916.18 30682.31 
1978 5 310752.50 176039.01 1983 1 1225.16 22621.29 
1978 6 268217.79 409566.94 1983 2 2689.31 20432.13 
1978 7 136707.41 170259.17 1983 3 17729.83 29999.80 
1978 8 23669.86 36308.43 1983 4 103077.39 62895.87 
1978 9 22460.24 16708.76 1983 5 203786.12 195838.02 
1978 10 19803.90 17603.90 1983 6 355711.03 594981.82 
1978 11 4916.20 22129.59 1983 7 267099.41 323178.84 
1978 12 362.33 19774.41 1983 8 52502.53 91247.60 
1979 1 5.20 18126.55 1983 9 21981.64 30489.92 
1979 2 5041.08 18210.64 1983 10 51512.53 39087.67 
1979 3 8556.77 29046.74 1983 11 28681.95 37005.62 
1979 4 156874.22 90981.82 1983 12 61.46 28770.05 
1979 5 274862.82 243552.40 1984 1 634.47 26820.89 
1979 6 256117.76 334770.25 1984 2 402.15 22831.34 
1979 7 142761.02 123159.67 1984 3 1037.27 38946.25 
1979 8 58423.24 44363.31 1984 4 47912.86 75510.74 
1979 9 5089.61 17006.28 1984 5 512368.51 526825.79 
1979 10 42329.20 18304.86 1984 6 266785.83 463715.70 
1979 11 1513.47 21064.46 1984 7 272392.80 186737.85 
1979 12 8226.56 21409.98 1984 8 70089.39 81286.61 
1980 1 4550.84 27577.19 1984 9 57175.39 46395.37 
1980 2 9598.70 18032.93 1984 10 22292.91 47745.12 
1980 3 3188.79 33191.01 1984 11 6680.47 41135.21 
1980 4 149281.02 111510.74 1984 12 703.89 28468.76 
1980 5 279251.66 345191.41 1985 1 0.65 27152.93 
1980 6 315417.52 278300.83 1985 2 664.05 25941.42 
1980 7 116622.74 84606.94 1985 3 10776.04 47634.45 
1980 8 23440.43 20985.72 1985 4 120505.67 140608.26 
1980 9 37851.47 15363.97 1985 5 164387.33 279338.18 
1980 10 45595.55 20948.83 1985 6 147330.05 203682.64 
1980 11 20451.40 20481.32 1985 7 81230.06 69112.07 
1980 12 7798.65 22123.24 1985 8 8277.88 30934.41 
1981 1 1124.28 19749.82 1985 9 31948.11 18654.55 
1981 2 4980.46 15944.73 1985 10 71041.51 39868.56 
1981 3 14420.44 21151.74 1985 11 3061.69 33679.34 
1981 4 98799.22 30251.90 1985 12 31.75 28185.92 
1981 5 257426.21 74522.98 1986 1 4172.00 27054.55 
1981 6 75195.48 109844.63 1986 2 18679.17 31078.61 
1981 7 55953.00 35865.72 1986 3 77175.13 73170.25 
1981 8 24952.22 16220.43 1986 4 91523.41 160066.12 
1981 9 25532.63 11496.20 1986 5 222561.40 285363.97 
1981 10 68327.04 22504.46 1986 6 441095.19 456991.74 
1981 11 15068.75 21659.50 1986 7 111902.29 151382.48 
1981 12 7368.99 24785.65 1986 8 30194.13 44769.12 
1982 1 1035.28 23555.90 1986 9 33461.90 32703.47 
1982 2 8678.02 17383.14 1986 10 63104.68 46915.04 
1982 3 10048.61 31364.83 1986 11 7446.20 44282.98 
1982 4 54225.36 55541.16 1986 12 611.83 27669.42 
1982 5 167542.28 183724.96 1987 1 1308.57 19005.82 
1982 6 195393.01 333401.65 1987 2 3545.54 25669.29 
1982 7 181332.71 214714.71 1987 3 8547.14 37870.21 
1982 8 36080.64 64131.57 1987 4 123592.74 83781.82 
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Year  Month  Qm Qo Year  Month   Qm Qo 
1987 5 150968.01 118425.12 1992 1 1418.07 15224.33 
1987 6 73886.46 52042.31 1992 2 3398.20 19615.74 
1987 7 38242.81 24066.25 1992 3 32410.30 33178.71 
1987 8 26570.10 17942.08 1992 4 202435.21 49001.65 
1987 9 12483.18 10675.04 1992 5 307196.16 79626.45 
1987 10 45785.61 14867.70 1992 6 76368.72 78307.44 
1987 11 21243.84 19975.54 1992 7 73217.88 41221.29 
1987 12 3385.00 22153.98 1992 8 24679.56 17616.20 
1988 1 732.29 17763.77 1992 9 25095.84 11222.48 
1988 2 1258.09 20526.55 1992 10 32826.67 15261.22 
1988 3 17347.91 33504.60 1992 11 3776.04 21344.13 
1988 4 117458.85 127636.36 1992 12 1355.14 17419.44 
1988 5 254546.00 201863.80 1993 1 214.90 19645.29 
1988 6 186629.76 216773.55 1993 2 757.09 17266.51 
1988 7 26034.81 44633.85 1993 3 33312.27 33762.84 
1988 8 6600.68 15070.61 1993 4 97498.15 65752.07 
1988 9 40389.94 10496.53 1993 5 364039.74 257264.13 
1988 10 4104.25 14898.45 1993 6 320050.17 327332.23 
1988 11 14330.25 19422.15 1993 7 116470.55 109140.50 
1988 12 276.85 21213.22 1993 8 32039.45 38294.48 
1989 1 444.87 18347.90 1993 9 54436.31 26973.22 
1989 2 6152.03 17222.08 1993 10 59680.99 35220.10 
1989 3 83127.41 58825.19 1993 11 5780.22 31192.07 
1989 4 164865.32 70809.92 1993 12 764.18 25935.47 
1989 5 138983.43 72985.79 1994 1 1587.10 23076.30 
1989 6 66379.07 78009.92 1994 2 2341.98 24347.50 
1989 7 39163.84 24582.74 1994 3 51665.46 49325.36 
1989 8 27573.44 20463.07 1994 4 174283.40 85388.43 
1989 9 57487.75 12192.40 1994 5 226149.09 178068.10 
1989 10 13735.76 16570.91 1994 6 81862.99 83424.79 
1989 11 8971.74 18410.58 1994 7 10246.94 19110.35 
1989 12 789.91 16245.02 1994 8 13285.25 11473.59 
1990 1 2724.94 15999.07 1994 9 10397.54 7324.96 
1990 2 5034.24 17760.79 1994 10 32595.07 16368.00 
1990 3 29121.21 36333.02 1994 11 12484.72 18481.98 
1990 4 112212.67 66823.14 1994 12 2315.91 18925.88 
1990 5 172270.51 70649.26 1995 1 1618.89 20131.04 
1990 6 198331.41 172978.51 1995 2 12059.68 19976.73 
1990 7 60476.67 62532.89 1995 3 43586.82 34377.72 
1990 8 17508.79 23402.18 1995 4 81988.88 29299.83 
1990 9 35524.26 13638.35 1995 5 352386.41 116826.45 
1990 10 71946.54 20752.07 1995 6 383094.66 478234.71 
1990 11 30294.70 24420.50 1995 7 207217.13 267840.00 
1990 12 1111.99 19387.04 1995 8 30023.07 46583.01 
1991 1 76.49 14154.45 1995 9 61370.80 24533.55 
1991 2 4828.92 15711.47 1995 10 63898.34 35392.26 
1991 3 11786.96 27515.70 1995 11 39954.57 43194.05 
1991 4 59692.38 47888.93 1995 12 4156.42 33584.53 
1991 5 326082.17 126111.07 1996 1 3577.95 30479.40 
1991 6 184086.01 196839.67 1996 2 7933.20 36304.66 
1991 7 57359.91 41639.40 1996 3 19005.95 47093.36 
1991 8 25677.42 24306.05 1996 4 132080.47 142512.40 
1991 9 18039.55 13894.21 1996 5 310523.91 306023.80 
1991 10 8732.37 14664.79 1996 6 233193.62 309064.46 
1991 11 10786.98 18095.21 1996 7 91456.82 83254.21 
1991 12 553.90 15906.84 1996 8 9410.91 29895.27 
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Year  Month  Qm Qo 
1996 9 28339.50 17583.47 
1996 10 10132.47 25726.41 
1996 11 39224.65 36243.97 
1996 12 4275.53 27989.16 
1997 1 18754.81 30270.35 
1997 2 2255.63 25724.83 
1997 3 39370.95 72432.40 
1997 4 113720.39 93897.52 
1997 5 298774.18 311188.76 
1997 6 422340.05 455980.17 
1997 7 156885.39 91493.55 
1997 8 86533.58 56703.87 
1997 9 189730.42 71285.95 
1997 10 28226.29 56648.53 
1997 11 4290.57 42015.87 
1997 12 334.53 34549.88 
1998 1 1304.97 31653.82 
1998 2 1493.98 29912.33 
1998 3 41153.16 71571.57 
1998 4 67608.59 74677.69 
1998 5 209375.04 175239.67 
1998 6 176170.08 229269.42 
1998 7 89479.15 112399.34 
1998 8 28875.58 50758.02 
1998 9 23568.32 23182.81 
1998 10 91234.52 36597.42 
1998 11 26172.10 41510.08 
1998 12 3183.70 29477.16 
1999 1 1196.64 25566.55 
1999 2 3393.94 25069.49 
1999 3 48475.38 49952.53 
1999 4 89568.72 71404.96 
1999 5 206931.55 212378.18 
1999 6 253396.07 344231.40 
1999 7 100116.38 103299.17 
1999 8 28270.22 41774.68 
1999 9 35780.75 26187.77 
1999 10 10259.34 26015.40 
1999 11 11247.22 24509.75 
1999 12 1334.55 25265.26 
2000 1 4570.83 21342.35 
2000 2 8535.25 24341.95 
2000 3 17904.16 36419.11 
2000 4 192495.93 81818.18 
2000 5 327509.66 185385.12 
2000 6 82827.41 113771.90 
2000 7 14040.52 23961.72 
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Table A4 Modeled streamflow for an increased precipitation in the Wyoming area of the 
North Platte Watershed 

 

Year 
Streamflow for Wyoming area of watershed (ac ft) 

Initial 
Precipitation increase (%) 

1% 3% 5% 
1956 234844.60 235879.64 237780.78 239909.43 
1957 363192.22 364641.72 367178.23 369850.50 
1958 225361.65 226060.76 227329.33 228598.99 
1959 224006.28 224902.57 226511.89 228152.51 
1960 178005.00 178590.32 179614.88 180607.60 
1961 309787.14 310514.78 311839.83 313245.52 
1962 264103.48 265339.88 267567.23 269797.68 
1963 217673.99 218332.22 219486.23 220637.76 
1964 230399.74 231217.06 232708.84 234192.68 
1965 402878.17 403849.48 405669.93 407428.50 
1966 170559.08 171074.41 171967.83 172903.11 
1967 340313.24 341187.95 342777.53 344364.00 
1968 335825.45 337252.91 339893.17 342607.68 
1969 285553.94 286394.02 287977.77 289538.41 
1970 414247.32 416134.24 419791.39 423037.31 
1971 298597.94 299462.96 301048.10 302701.31 
1972 225943.46 226737.36 228086.72 229438.54 
1973 495373.77 497196.03 500790.31 504311.70 
1974 311313.89 312625.74 315011.08 317578.31 
1975 272258.89 273509.89 275788.65 278122.89 
1976 253763.23 254563.70 256033.63 257485.57 
1977 283867.67 284560.14 285824.64 287061.93 
1978 290852.60 291930.38 293923.65 295958.17 
1979 279717.41 281108.67 283730.47 286428.06 
1980 299812.03 301076.32 303358.40 305689.61 
1981 265986.61 266435.30 267214.41 267931.37 
1982 271075.60 271842.61 273041.33 274299.54 
1983 319658.21 320688.64 322466.54 324369.85 
1984 397648.34 399186.11 401927.29 404808.65 
1985 150280.67 150905.06 151987.70 153063.81 
1986 319324.25 320282.75 322248.47 324086.34 
1987 181986.45 182438.92 183223.36 184012.67 
1988 216741.74 217649.48 219386.94 221133.42 
1989 207753.25 208583.90 210158.36 211779.45 
1990 209267.78 210058.58 211490.97 212906.96 
1991 276033.62 276528.34 277582.69 278682.00 
1992 298014.90 298872.66 300342.77 301846.94 
1993 378376.58 379706.46 382199.19 384637.58 
1994 267936.51 269118.87 271253.34 273369.35 
1995 445330.42 446151.52 447685.41 449203.08 
1996 271482.98 272342.67 273874.62 275374.96 
1997 382756.18 384002.91 386245.00 388533.58 
1998 265553.00 266255.31 267573.22 268856.04 
1999 333808.02 334656.04 336277.99 337954.61 
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Table A5 Modeled streamflow for an increase of precipitation (5%) for different regions and landcover of the North Platte Watershed 
 
 

Year 
Streamflow for entire North Platte Watershed (ac ft) 

Initial 
Regions Landcover (approx. 30% coverage in each grid) 

CE CW NE NW SE SW WL WGL EF OS CL GL 
1981 632230 641326 636705 636636 638095 639124 641547 637360 633897 640877 633184 633022 634422 

1982 830772 841453 842322 834904 836141 840918 847005 844173 834339 857005 831556 832939 834058 

1983 1060869 1073966 1077985 1064665 1066121 1074478 1076961 1080379 1066597 1095128 1061964 1063203 1066259 

1984 1309055 1326744 1343059 1312979 1317042 1325628 1330676 1336454 1316848 1354979 1310426 1312467 1318329 

1985 594797 601914 603592 596117 596880 604158 606206 605459 597210 612433 595183 595826 597223 

1986 1104900 1119599 1123212 1108696 1110892 1120296 1121067 1126597 1110550 1144045 1106116 1107499 1110511 

1987 510307 518026 514824 512518 514170 516977 518437 515844 512033 519289 510793 510997 512294 

1988 721413 732334 734082 724212 725605 732262 734185 737371 725408 750725 722560 723638 726541 

1989 602889 613295 609886 605861 606962 612008 612956 614168 606450 621026 604297 604808 608373 

1990 656702 667023 665969 659690 660105 666800 667669 669698 660149 679331 657971 658639 661179 

1991 790983 801424 797558 795676 796244 801928 803996 801158 793283 808202 791745 792229 793339 

1992 766293 778764 778027 770170 771733 775526 777105 775968 769237 783353 767493 767394 770664 

1993 1056776 1073435 1090269 1060832 1063144 1067885 1070974 1078918 1062547 1095483 1058646 1059218 1064332 

1994 638045 651289 657705 640562 641462 644212 646451 651188 641584 659526 638965 639479 643267 

1995 1220742 1236103 1237466 1227204 1228712 1233585 1235660 1233722 1224130 1246399 1221599 1222027 1223916 

1996 943532 954722 954684 947389 949047 954351 960624 962146 948914 980421 945473 946287 949050 

1997 1381998 1399160 1409425 1386846 1388844 1399368 1407680 1407251 1388689 1429515 1383404 1385113 1388668 

1998 671880 682798 678264 675886 677476 679802 682386 682866 674601 687679 673433 673243 675651 

1999 887720 902683 905441 892098 893701 898801 900537 902412 891387 913667 888719 889425 891798 
(CE: centraleast, CW: centralwest, NE: northeast, NW: northwest, SE: southeast, SW: southwest; WL: woodland, WGL: wooded grassland, EF: 
evergreen needleleaf forest, OS: open shrublands, CL: croplands, GL: grasslands)  
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Table A6 Text file (.txt) format to import in ARCGIS to show the spatial distribution of precipitation for each grid (1/8 degree) in North Platte 
watershed (14 * 14 grids; xll: longitude lower left corner; yll: latitude lower left corner; grid size=0.125; If no value in any grid = -9999.0000) 

 
ncols  14 
nrows  14 
xllcorner  -107.500000 
yllcorner  40.250000 
cellsize  0.125000 
NODATA_value  -9999.000000 
-9999.000000 -9999.000000 -9999.000000 262.399000 265.666000 -9999.000000 -9999.000000 -9999.000000 -9999.000000 -9999.0000
 -9999.000000 -9999.000000 -9999.000000 -9999.000000   
-9999.000000 285.75800000 252.85300000 274.443038 233.684135 297.308596 332.049019 336.256154 354.12115096 -9999.0000
 -9999.000000 -9999.000000 -9999.000000 -9999.000000  
360.22000000 357.40300000 331.49600000 290.388154 274.945346 288.285692 368.509712 622.639865 -9999.000000 -9999.0000
 -9999.000000 -9999.000000 -9999.000000 -9999.000000   
484.83300000 408.85600000 303.938558 315.298269 281.911635 286.637885 381.598462 576.772558 594.268500 -9999.0000
 -9999.000000 -9999.000000 -9999.000000 -9999.000000  
-9999.000000 548.0580000 472.890000 411.819500 316.387096 287.641692 380.982885 714.261615 961.620077 -9999.0000
 -9999.000000 -9999.000000 -9999.000000 -9999.000000  
-9999.0000 -9999.000000 691.57800000 749.29000000 439.668346 326.574423 347.696827 594.243115 892.132038 943.259538
 -9999.000000 -9999.000000 -9999.000000 -9999.000000  
-9999.000000 -9999.000000 -9999.000000 1148.9620000 888.04500000 509.5212885 444.729423 434.212673 606.184942 763.569096
 620.717635 -9999.000000 -9999.000000 -9999.000000  
-9999.000000 -9999.000000 -9999.000000 -9999.000000 1080.6110000 975.8970000 1005.3248846 593.637923 499.551115 587.893808
 626.233462 -9999.000000 -9999.000000 -9999.000000 
-9999.000000 -9999.000000 -9999.000000 -9999.000000 -9999.000000 1290.6490000 1292.7850000 673.857019 564.233154 419.601519
 752.535250 -9999.000000 -9999.000000 -9999.000000  
-9999.000000 -9999.000000 -9999.000000 -9999.000000 -9999.000000 -9999.000000 1395.3450000 588.763000 381.049731 330.932192
 412.734212 915.147269 -9999.000000 -9999.000000 
-9999.000000 -9999.000000 -9999.000000 -9999.000000 -9999.000000 -9999.000000 1395.5360000 526.67300000 402.347615 358.431904
 380.276923 558.692596 1145.021000 -9999.000000  
-9999.000000 -9999.000000 -9999.000000 -9999.000000 -9999.000000 -9999.000000 1214.445000 525.545000 422.487096 408.454596
 466.187000 632.941231 1110.215000 1093.411000 
-9999.000000 -9999.000000 -9999.000000 -9999.000000 -9999.000000 -9999.000000 1171.436000 640.042000 633.841019 829.954846
 567.606288 703.743808 1026.379615 1039.774000  
-9999.000000 -9999.000000 -9999.000000 -9999.000000 -9999.000000 -9999.000000 -9999.000000 -9999.000000 629.6840000 803.1320000
 702.095981 694.546250 783.862423 -9999.000000 
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Figure A2  Probability density function plot of change in streamflow for ensemble multi-

models under changing VIC calibrated parameter ‘binf.’ for future climate. 
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APPENDIX B 

DOWNSCALING EXAMPLE 

(TASK 3) 
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B.2.1 Temporal Downscaling 

The BCTD technique adopted by Wood et al (2004) is extended to downscale the 

precipitation data from monthly to daily; and daily to hourly or actual storm event. The 

downscaling is performed with respect to the actual storm event. It follows four major 

steps which are as follows: 

• Find the scaling factor (f = O1/M1) between observed (O1) and modeled (M1) 

monthly data for a particular storm.  

• Apply this factor to future modeled data (M2) to obtain future observed data (O2= f 

*M2). 

• Find the difference in between the future and present observed data (d = O2-O1). 

• Transform present storm data to future conditions by distributing the difference in a 

weighted proportional method. In this case, the difference is distributed only among 

the wet days in a month, and only the number of hours the storm actually occurred for 

that particular day. ((d / O1) * observed data for the storm) 

An example is presented here for better understanding of the method applied in this 
research. 
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Station Id: 4359 
Station Data: July 1999 

 
Table B1 Calculation of daily rainfall for July for future periods with respect to the actual storm event (July 8 1999) 

 

Days 
Daily 

rainfall 
(in) 

Daily 
rainfall       

(d1, mm) 

Total 
rainfall 
(O1, 
mm) 

Daily rainfall 
from GCM, 

for July 1999   
(m1, mm/day) 

Total rainfall 
for July (mm) 

Scale 
factor 

Daily rainfall from 
GCM, for July 

2030's                 
(d2, mm/day) 

Total rainfall 
for July 2030's 

(M1= m1* 31) f = O1/M1 (M2= d2 * 31 ) 
1 0.00 0.00       
2 0.00 0.00       
3 0.00 0.00       
4 0.00 0.00       
5 0.00 0.00 35.56 0.51 15.85 2.24 0.62 19.25 
6 0.00 0.00       
7 0.00 0.00       
8 1.08 27.43       
9 0.16 4.06       
10 0.00 0.00       
11 0.00 0.00       
12 0.00 0.00       
13 0.00 0.00       
14 0.16 4.06       
15 0.00 0.00       

---------------------       
27 0.00 0.00       
28 0.00 0.00       
29 0.00 0.00       
30 0.00 0.00       
31 0.00 0.00       
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Table B1 Calculation of daily rainfall for July for future periods with respect to the actual storm event (continue from previous page). 

      

Total rainfall 
for July 2030's 

Adjusted total 
rainfall for July 

2030's 
Difference 

Adjusted daily 
rainfall for July 

2030's 

Future total 
rainfall for 
July 8 1999 

(mm) 

      

   
( M2= d2 * 31 ) ( O2= f * M2) (d3=O2-O1) d1+((d1/O1)*d3)       

   0.00     
   0.00     
   0.00     
   0.00 33.33    

19.25 43.20 7.64 0.00     
   0.00     
   0.00     
   33.33     
   4.94     
   0.00     
   0.00     
   0.00     
   0.00     
   4.94     
   0.00     
  ---------------------    
   0.00     
   0.00     
   0.00     
   0.00     
   0.00     
   0.00     
   0.00     
      0.00         
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Table B2 Calculation of rainfall for actual storm event for future periods, based on the actual storm event on July 8 1999 
 

Date Time 
Rainfall 

(in) 

Rainfall
R1 

(mm) 

Observed total 
rainfall for    
July 8 1999         
(Tp, mm) 

Modeled total 
rainfall for July 8 

1999        
(T2030, mm) 

Difference(mm)              
(D = T2030-Tp) 

Adjusted Future 
Rainfall (mm)  

Adjusted 
Future 

Rainfall 
(in)  

 

 
d = R1+((D/Tp)*R1) (d/25.4)  

7/8/1999 11:00 0.000 0.000    0.000 0.000  

7/8/1999 11:48 0.040 1.016    1.234 0.049  

7/8/1999 11:49 0.080 2.032    2.469 0.097  

7/8/1999 11:50 0.040 1.016 27.432 33.328 5.896 1.234 0.049  

7/8/1999 11:50 0.040 1.016    1.234 0.049  

7/8/1999 11:50 0.040 1.016    1.234 0.049  

7/8/1999 11:51 0.040 1.016    1.234 0.049  

7/8/1999 11:51 0.040 1.016    1.234 0.049  

7/8/1999 11:52 0.040 1.016    1.234 0.049  

7/8/1999 11:52 0.040 1.016    1.234 0.049  

7/8/1999 11:52 0.040 1.016    1.234 0.049  

7/8/1999 11:53 0.040 1.016    1.234 0.049  

7/8/1999 11:54 0.040 1.016    1.234 0.049  

7/8/1999 11:55 0.040 1.016    1.234 0.049  

7/8/1999 11:56 0.040 1.016    1.234 0.049  

7/8/1999 11:58 0.040 1.016    1.234 0.049  

7/8/1999 12:01 0.080 2.032    2.469 0.097  

7/8/1999 12:11 0.160 4.064    4.937 0.194  

7/8/1999 12:14 0.040 1.016    1.234 0.049  

7/8/1999 12:20 0.080 2.032    2.469 0.097  

7/8/1999 14:20 0.080 2.032       2.469 0.097  
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APPENDIX C 

PROGRAMMING CODES 

(TASK 1,  2, 3) 
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*************************************************** ****************** 
function flux2flow(pth, outfile, infilescsv) 
if nargin < 2; error('flux2flow(pth, outfile, infilescsv)');  
end 
% This program converts flux to flow.  
gridsize=0.125; 
pth='C:\cygwin\home\vicfiles\results'; 
if exist('infilescsv') ~= 1 

files=dir([pth 'fluxes*']); 
wt=ones(size(files)); 
else 
csvd=csvread(infilescsv); 
for k=1:size(csvd, 1) 
files(k,1).name = sprintf('fluxes_%.4f_%.4f', csvd(k,1), csvd(k,2)); 
end 
wt=csvd(:,3); 

end 
data=readASCIItable([pth files(1).name]); 
fname=regexprep(files(1).name, '_', ' '); 
[dum fname]=strtok(fname); [lat lon]=strtok(fname); 
A=latlonGridArea(str2num(lat), str2num(lon), gridsize); 
runoff=data(:,6)*A*wt(1); 
for k=2:length(files) 

disp(files(k).name); 
data=readASCIItable([pth files(k).name]); 
fname=regexprep(files(k).name, '_', ' '); 
[dum fname]=strtok(fname); [lat lon]=strtok(fname); 
A=latlonGridArea(str2num(lat), str2num(lon), gridsize); 
runoff=runoff+data(:,6)*A*wt(k);              % mm x km x km = 1000 m3 

end 
%1 cubic meter = 0.000810713194 acre foot 
runoff=runoff*1000*0.000810713194; % Convert to Acre-foot 
%runoff=runoff*1000*35.3146667; % Convert to Cubic-foot 
disp(['Writing... ' pth outfile '_Daily.csv']); 
dlmwrite([pth outfile '_Daily.csv'], [data(:,1:3) runoff],'delimiter',',','precision', '%.6f'); 
return; 
 
*************************************************** ****************** 
function data=readASCIItable(filename, FORMAT, skipheaderlines) 
% Program Details: 
% Reads tabulated data in a text file 
% If FORMAT of the data is not given %f floating point is assumed 
 
if (nargin == 0); error('Usage: data=readASCIItable(filename, <FORMAT def:%f>);'); 
end 
if (exist('FORMAT') ~= 1); FORMAT='%f'; end 
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if (exist('skipheaderlines') ~= 1); skipheaderlines=0; end 
fid=fopen(filename, 'rt'); 
for k=1:skipheaderlines; line=fgets(fid); end 
line=fgets(fid); 
data=sscanf(line, FORMAT); 
cols=length(data); 
fseek(fid, 0, 'bof'); 
for k=1:skipheaderlines; line=fgets(fid); end 
data=fscanf(fid, FORMAT); 
fclose(fid); 
data=transpose(reshape(data, cols, [ ])); 
 
*************************************************** ****************** 
function editmaintxtfolder 
%This program is useful to read all text files in a folder, the text files starts with data-_-.   
ipath='C:\Documents and Settings\anil acharya\My Documents\change of forcing 
data_wed mod\change of regions_SW\'; 
ifiles=dir([ipath 'data*']) 
length(ifiles); 
opath='C:\Documents and Settings\anil acharya\My Documents\dataset for change of 
regions\change of regions_SW\'; 
for k=1:length(ifiles); 
%for k=1 

disp([ipath ifiles(k).name]); 
data=edittxtfolder([ipath ifiles(k).name]); 
ofid=fopen([opath ifiles(k).name], 'wt'); 
%for n=1 
fprintf(ofid, '%6.2f %6.2f %6.2f %6.2f\n', data'); 
%end 
fclose(ofid); 

end 
 
*************************************************** ****************** 
function data=edittxtfolder(filename) 
%This program can read data in a text file and converts the individual column.    
%if (nargin == 0); error('Usage: data=edittxtfolder(filename),<FORMAT def:%f>);'); 
end 
if (exist('FORMAT') ~= 1); FORMAT='%f'; end 
if (exist('skipheaderlines') ~= 1); skipheaderlines=0; end 
fid = fopen(filename, 'rt'); 
data = fscanf(fid, '%f %f %f %f', [4 inf]) ;   % It has 4 rows now. 
data = transpose(data); 
size(data) 
fclose(fid); 
data(:,1)=data(:,1)*1.1; %increase first column ppt. data by 10 percent. 
data(:,2)=data(:,2)+0.0; 
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data(:,3)=data(:,3)+0.0; 
return; 
 
*************************************************** ****************** 
function flux2annualflow_wateryear(csvfile) 
% This function converts daily data into yearly data. 
if nargin < 1; error('flux2annualflow(csvfile)'); end 
data=csvread(csvfile); 
data2=[]; 
for yr=1950:2000 

selm=find(data(:,1) == yr-1 & data(:,2) == 10 & data(:,3) == 1); 
seln=find(data(:,1) == yr & data(:,2) == 9 & data(:,3) == 30); 
if isempty(seln) | isempty(selm); continue; end 
data2=[data2; yr 1 1 sum(data(selm:seln,4))]; 

end 
ocsvfile=regexprep(csvfile, '_Daily.csv', '_Annual_WY.csv'); 
dlmwrite(ocsvfile, data2,'delimiter',',','precision', '%.6f'); 
return; 
 
*************************************************** ****************** 
function kstest(filename) 
%This function is developed for two sample Kolmogorov-Smirnov (K-S) goodness of 
%fit test. 
filename='C:\Documents and Settings\anil acharya\Desktop\B1.xls'; 
x1=xlsread(filename,'Monthly streamflow_1970-2100','E482:E1549'); 
x2=xlsread(filename,'Monthly streamflow_1970-2100','F482:F1549'); 
 
%The following code is to perform the KS test. 
[h,p,ks2stat]= kstest2(x1,x2); 
% [h,p,ks2stat]= kstest2(x1,x2,0.05,'unequal')  %This is the default 
% [h,p,ks2stat]= kstest2(x1,x2) % represents same as above line.  
% The null hypothesis is that the two data vectors are from the same continuous 
distribution % while the alternative hypothesis is that they are from different continuous 
distributions. the % result h is 1 if the test rejects the null hypothesis at the 5% 
significance level; 0 otherwise. % The p value is less than 0.05 while rejecting the null 
hypothesis.  
end 
 
*************************************************** ****************** 
function pcpgrid2avgpcpgrid(pth, outfile, infilescsv) 
% This function calculates the average of precipitation, minimum and maximum 
%temperature, and wind speed for a number of grid cells in a watershed. 
if nargin < 2; error('pcpgrid2avgpcpgrid(pth, outfile, infilescsv)');  
end 
pth='C:\cygwin\home\vicfiles\results'; 
if exist('infilescsv') ~= 1 
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files=dir([pth 'data*']); 
wt=ones(size(files)); 
else 
csvd=csvread(infilescsv); 
for k=1:size(csvd, 1) 

files(k,1).name = sprintf('data_%.4f_%.4f', csvd(k,1), csvd(k,2)); 
end 
wt=csvd(:,3); 

end 
data=readASCIItable([pth files(1).name]); 
fname=regexprep(files(1).name, '_', ' '); 
[dum fname]=strtok(fname); [lat lon]=strtok(fname); 
precip=data(:,1); 
maxtmp=data(:,2); 
mintmp=data(:,3); 
windspeed=data(:,4); 
for k=2:length(files) 

disp(files(k).name); 
data=readASCIItable([pth files(k).name]); 
fname=regexprep(files(k).name, '_', ' '); 
[dum fname]=strtok(fname); [lat lon]=strtok(fname); 
precip=precip+data(:,1); 
maxtmp=maxtmp+data(:,2); 
mintmp=mintmp+data(:,3); 
windspeed=windspeed+data(:,4); 

end 
precip=precip/length(files); 
maxtmp=maxtmp/length(files); 
mintmp=mintmp/length(files); 
windspeed=windspeed/length(files); 
dlmwrite([pth outfile '_avgppttmpwindDaily.csv'], [precip maxtmp mintmp 
windspeed],'delimiter',',','precision', '%.6f'); 
 
return; 
 
*************************************************** ****************** 
function pdfplot 
%This plots the probability density function for the data from 16 models using Kernels 
density function. 
filename='C:\Documents and Settings\anil acharya\Research\North Plate\Main 
Files\results_GCM\all binf comparison.xlsx'; 
 
y1=xlsread(filename,'modelcomparison','BY3:BY91'); 
y2=xlsread(filename,'modelcomparison','BZ3:BZ91'); 
y3=xlsread(filename,'modelcomparison','CA3:CA91'); 
y4=xlsread(filename,'modelcomparison','CB3:CB91'); 
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y5=xlsread(filename,'modelcomparison','CC3:CC91'); 
y6=xlsread(filename,'modelcomparison','CD3:CD91'); 
y7=xlsread(filename,'modelcomparison','CE3:CE91'); 
y8=xlsread(filename,'modelcomparison','CF3:CF91'); 
y9=xlsread(filename,'modelcomparison','CG3:CG91'); 
y10=xlsread(filename,'modelcomparison','CH3:CH91'); 
y11=xlsread(filename,'modelcomparison','CI3:CI91'); 
y12=xlsread(filename,'modelcomparison','CJ3:CJ91'); 
y13=xlsread(filename,'modelcomparison','CK3:CK91'); 
y14=xlsread(filename,'modelcomparison','CL3:CL91'); 
y15=xlsread(filename,'modelcomparison','CM3:CM91'); 
y16=xlsread(filename,'modelcomparison','CN3:CN91'); 
Avg=xlsread(filename,'modelcomparison','CO3:CO91'); 
 
[f1,x1] = ksdensity(y1); 

plot(x1,f1,'k.:','LineWidth',1,'MarkerSize',1.5); 
hold on 
[f2,x2] = ksdensity(y2); 

plot(x2,f2,'ko:','LineWidth',1,'MarkerSize',1.5); 
hold on 
[f3,x3] = ksdensity(y3); 

plot(x3,f3,'kx:','LineWidth',1,'MarkerSize',1.5); 
hold on 
[f4,x4] = ksdensity(y4); 

plot(x4,f4,'k+:','LineWidth',1,'MarkerSize',1.5); 
hold on 
[f5,x5] = ksdensity(y5); 

plot(x5,f5,'k*:','LineWidth',1,'MarkerSize',1.5); 
hold on 
[f6,x6] = ksdensity(y6); 

plot(x6,f6,'ks:','LineWidth',1,'MarkerSize',1.5); 
hold on 
[f7,x7] = ksdensity(y7); 

plot(x7,f7,'kd:','LineWidth',1,'MarkerSize',1.5); 
hold on 
[f8,x8] = ksdensity(y8); 

plot(x8,f8,'kv:','LineWidth',1,'MarkerSize',1.5); 
hold on 
[f9,x9] = ksdensity(y9); 

plot(x9,f9,'k^:','LineWidth',1,'MarkerSize',1.5); 
hold on 
[f10,x10] = ksdensity(y10); 

plot(x10,f10,'k<:','LineWidth',1,'MarkerSize',1.5); 
hold on 
[f11,x11] = ksdensity(y11); 

plot(x11,f11,'k>:','LineWidth',1,'MarkerSize',1.5); 
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hold on 
[f12,x12] = ksdensity(y12); 

plot(x12,f12,'kp:','LineWidth',1,'MarkerSize',1.5); 
hold on 
[f13,x13] = ksdensity(y13); 

plot(x13,f13,'kh:','LineWidth',1,'MarkerSize',1.5); 
hold on 
[f14,x14] = ksdensity(y14); 

plot(x14,f14,'k+','LineWidth',1,'MarkerSize',1.5); 
hold on 
[f15,x15] = ksdensity(y15); 

plot(x15,f15,'k*','LineWidth',1,'MarkerSize',1.5); 
hold on 
[f16,x16] = ksdensity(y16); 

plot(x16,f16,'kx','LineWidth',1,'MarkerSize',1.5); 
hold on 
[f17,x17] = ksdensity(Avg); 

plot(x17,f17,'LineWidth',2,'MarkerSize',3); 
hold on 

legend('bcm','cgcm','cm3','mk3','gfdl 2.0','gfdl 
2.1','giss','inmcm','cm','medres','echo','echam','cgcm','ccsm','pcm','hadcm3','Averag
e') 

hold off 
title(['Density estimate for A1B'],'Fontsize',11,'color','k'); 
xlabel('Percent change(%)'); 
ylabel ('Density'); 
end 
 
*************************************************** ****************** 
function snotel2csv; 
%This function is used to process the snotel precipitation and temperature %data (.txt file 
from National Resource Conservation Service, NRCS) and write it in a .csv format.  
filename='C:\Documents and Settings\Anil\snotel\OldBattle_pcp.txt'; 
fid=fopen(filename, 'rt'); 
str=textscan(fid, '%s', 'delimiter', '\n', 'whitespace', ''); 
fclose(fid); 
marks=[]; 
for k=1:size(str{1}, 1); 

if (strcmp(str{1}{k}, '----------') == 1); marks=[marks; k]; end; 
end 
marks=marks-35; 
 
Data=[]; 
[M,D]=meshgrid([10:12 1:9], 1:31); 
Y=M; 
for k=1:length(marks) 
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[d, um]=strtok(str{1}{marks(k)-7}); [yr, um]=strtok(um); 
yr=str2num(yr); if (yr < 50); yr=yr+2000; else; yr=yr+1900; end; 
Y(:,1:3)=yr-1;Y(:,4:end)=yr; 
data=strvcat(str{1}{marks(k):(marks(k)+30)}); 
bars=strvcat(str{1}{marks(k)-1}); 
for n=1:size(data,1) 

sel=(fix(bars) == 45 & fix(data(n,:)) == 32); 
data(n,sel)='-'; 
data(n,:)=regexprep(data(n,:), '---', 'Nan'); 
data(n,:)=regexprep(data(n,:), '-', ' '); 

end 
data=transpose(reshape(sscanf(transpose(data), '%f'), [], 31)); 
data=data(:, 2:end); 
Data=[Data; [Y(:) M(:) D(:) data(:)]]; 

end 
% If its a pcp or swq data then convert to mm 
if (strcmp(filename((end-2):end), 'pcp') | strcmp(filename((end-2):end), 'swq')) 

Data(:,4)=Data(:,4)*25.4; % Convert inches to mm 
end 
ofile=regexprep(filename, '\.', ''); 
csvwrite([ofile '.csv'], Data(:,1:4)); 
return; 
 
*************************************************** ****************** 
function metData_bin2asc 
% The program converts binary forcing data into ascii format 
ipath='E:\vic411files\forcing data\A1B_binary\sresa1b.mri_cgcm2_3_2a.5\';   
ifiles=dir([ipath 'data*']); 
opath='E:\vic411files\forcing data\A1B_ascii\sresa1b.mri_cgcm2_3_2a.5\';  
for k=1:length(ifiles) 

disp([ipath ifiles(k).name]) 
r=readmetBINARYdata([ipath ifiles(k).name], datenum(1950, 1, 1, 2099, 12, 
31)); 
ofid=fopen([opath ifiles(k).name], 'wt'); 
for n=1:length(r.year) 
fprintf(ofid, '%6.2f %6.2f %6.2f %6.2f\n', r.prcp(n), r.tmax(n), r.tmin(n), 
r.wind(n)); 
end 
fclose (ofid); 

end 
 
*************************************************** ***************** 
 
function r = readmetBINARYdata(filename, startJD) 
% This function loads the binary met data 
if (nargin == 0); error('r=readmetBINARYdata(filename, startJD)'); end 
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disp('The variables are to be set manually'); 
fid=fopen(filename, 'r'); 
fseek(fid, 0, 'eof'); 
Nrec=ftell(fid)/8; 
fseek(fid, 0, 'bof'); 
r.prcp = fread(fid, Nrec, '1*uint16', 6)/40.0; 
fseek(fid, 2, 'bof'); 
r.tmax = fread(fid, Nrec, '1*int16', 6)/100.0; 
fseek(fid, 4, 'bof'); 
r.tmin = fread(fid, Nrec, '1*int16', 6)/100.0; 
fseek(fid, 6, 'bof'); 
r.wind = fread(fid, Nrec, '1*int16', 6)/100.0; 
dvec=datevec(datenum(1949, 1, 1, 0, 0, 0):datenum(2000, 7, 31, 0, 0, 0)); 
dvec=datevec(startJD:startJD+length(r.prcp)-1); 
r.year=date2fyear(dvec); 
fclose(fid); 
return; 
 
*************************************************** ****************** 
function fyear=date2fyear(dvec) 
% This function converts date to fyear 
%          fyear=date2fyear([yr, mon, day, <hr, min, sec>]) 
if (nargin < 1); error('fyear=date2fyear([yr, mon, day, <hr, min, sec>])'); end; 
if (size(dvec,2) > 3 & size(dvec,2) < 6); error('fyear=date2fyear([yr, mon, day, <hr, min, 
sec>])'); end; 
[fdoy, yr]=date2fdoy(dvec); 
sel=frac(fdoy) == 0; 
fdoy(sel)=fdoy(sel)+1/60/24/366; 
fyear=yr+fdoy/366; 
 
*************************************************** ****************** 
function [fdoy, yr]=date2fdoy(dvec) 
% This function converts date to floating point day of year 
% fdoy=date2fdoy([yr, mon, day, <hr>, <min>, <sec>]) 
if (nargin < 1); error('fdoy=date2fdoy([yr, mon, day, <hr, min, sec>])'); end; 
if (size(dvec,2) > 3 & size(dvec,2) < 6); error('fdoy=date2fdoy([yr, mon, day, <hr, min, 
sec>])'); end; 
[idoy, yr]=date2idoy(dvec); 
% Start of year is 0 
% End of year is 364.99999 or 365.999999 
idoy=idoy-1; 
if (size(dvec, 2) == 3) 
  error('Date vector doesn''t have time-of-day entries'); 
else 
  fdoy=idoy+tod2fday(dvec(:,4:6)); 
end 
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*************************************************** ****************** 
function [idoy, yr]=date2idoy(dvec) 
% This function converts date to integer day of year 
%  idoy=date2idoy([yr, mon, day, <hr>, <min>, <sec>]) 
if (nargin < 1); error('idoy=date2idoy([yr, mon, day, <hr, min, sec>])'); end; 
if (size(dvec,2) > 3 & size(dvec,2) < 6); error('idoy=date2idoy([yr, mon, day, <hr, min, 
sec>])'); end; 
yr=fix(dvec(:,1)); 
mn=fix(dvec(:,2)); 
dy=fix(dvec(:,3)); 
monthly_days=[0 cumsum([31 28 31 30 31 30 31 31 30 31 30 31])]; 
monthly_days_leap=[0 cumsum([31 29 31 30 31 30 31 31 30 31 30 31])]; 
idoy=dy*0; 
for i=1:length(yr) 
  if (isleap(yr(i))) 
    idoy(i)=dy(i)+monthly_days_leap(mn(i)); 
  else 

idoy(i)=dy(i)+monthly_days(mn(i)); 
  end 
end 
return; 
 
*************************************************** ****************** 
function x=isleap(yy) 
% This function returns 1 if input is a leap year 
%        x=isleap(yy) 
if (nargin == 0); error('x=isleap(yy)'); end; 
x=(~mod(yy, 4) & mod(yy, 100)) | ~mod(yy, 400); 
 
*************************************************** ****************** 
function [month, day, year] = date2mdy(d) 
% This function converts a Matlab date format to month, day, year 
%  [month, day, year] = date2mdy(Date) 
%  Date is the date format is in the matlab function DATE 
 
if nargin == 0 
     d = date; 
end 
 
i = 1; 
while d(i) ~= '-' 
  day(1,i) = d(i); 
   i = i + 1; 
end 
 
day = str2num(day); 
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 i = i + 1; 
while d(i) ~= '-' 

month = [month d(i)]; 
    i = i + 1; 
 end 
  
if month == 'Jan' 
    month = 1; 
  elseif month == 'Feb' 
  month = 2; 

elseif month == 'Mar' 
   month = 3; 
  elseif month == 'Apr' 
    month = 4; 
  elseif month == 'May' 
    month = 5; 
  elseif month == 'Jun' 
    month = 6; 

elseif month == 'Jul' 
    month = 7; 
  elseif month == 'Aug' 
   month = 8; 

elseif month == 'Sep' 
    month = 9; 
  elseif month == 'Oct' 
   month = 10; 

elseif month == 'Nov' 
   month = 11; 
  elseif month == 'Dec' 
    month = 12; 
  else  
    error('Problem identifying the month') 
 end 
   
 i = i + 1; 
 year = d(1,i:size(d,2)); 
 year = str2num(year); 
 
*************************************************** ****************** 
function A=latlonGridArea(lat, lon, gridsize) 
% A=latlonGridArea(lat, lon, gridsize) 
% This function returns area in square kilometers 
A=zeros(size(lat)); 
dln=[-gridsize -gridsize gridsize gridsize]/2; 
dlt=[-gridsize gridsize gridsize -gridsize]/2; 
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for k=1:length(A(:)) 
[x, y]=ll2km(lat(k), lon(k), lat(k)+dlt, lon(k)+dln); 
A(k)=polyarea(x, y); % Area in square kilometers 

end 
return; 
lon=readASCIIimg([gfolder 'longitude.txt'], '%f'); 
lat=readASCIIimg([gfolder 'latitude.txt'], '%f'); 
A=latlonGridArea(lat, lon, 1/8); 
%subplot(2,1,1);plot(lon+dln, lat+dlt, 'ro-', lon, lat, 'x'); 
%subplot(2,1,2);plot(x, y); 
 
*************************************************** ****************** 
function [x,y]=ll2km(lat0, long0, lat, long) 
% LL2KM Compute distance between two geographical locations 
%       [x y]=ll2km(lat0, long0, lat, long) 
%       x: Distance along longitude 
%       y: Distance along latitude 
if (nargin < 3); error('[x,y]=ll2km(lat0, long0, lat, long)'); end; 
dtr=pi/180; 
rtd=180/pi; 
Ra=6378.1363; 
Kflat=1/298.257; 
 
RE=(1-Kflat*(sin(dtr*lat0))^2)*Ra; 
R2=RE*cos(dtr*lat); 
A=RE*sin(dtr*(lat-lat0)); 
B=R2.*(1-cos(dtr*(long-long0)))*sin(dtr*lat0); 
C=R2.*sin(dtr*(long-long0)); 
x=C; 
y=A+B; 
 
*************************************************** ****************** 
% Calculates the 100-yr Precipitation value for each climate change 
% projection scenario 
clear all 
clc 
load mod_all 
load obs_all 
[mmon outs] = size(mod_all); %mmon - number of months in model data 
omon = length(obs_all); %omon - number of months in observed data 
myrs = mmon/12; 
oyrs = omon/12; 
%Reshape matrix to calculate the Annual Maximum (AM) series easier. 
re_mod_all = reshape(mod_all,12,(mmon*outs)/12); 
re_obs_all = reshape(obs_all,12,(omon)/12); 
re_mam_all = max(re_mod_all); 
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re_oam_all = max(re_obs_all); 
 
%Reshape max matrix so that years are on the rows and each column is a 
%different model output. 
mam_all = reshape(re_mam_all,myrs,outs); 
oam_all = reshape(re_oam_all,oyrs,1); 
%------------------------------------------------------ 
%   LOG PEARSON TYPE III - CURRENT CONDITIONS ANALYSIS 
% %---------------------------------------------------- 
ystart = 1971; 
yend = 2000; 
years = 1950:1:2099; 
curstart = find(years == ystart); 
curend = find(years == yend); 
f1s = 2011; f1start = find(years == f1s); 
f1e = 2040; f1end = find(years == f1e); 
f2s = 2041; f2start = find(years == f2s); 
f2e = 2070; f2end = find(years == f2e); 
f3s = 2071; f3start = find(years == f3s); 
f3e = 2099; f3end = find(years == f3e); 
 
%Step 1) Calc the log of all the values 
log_mam = log10(mam_all); 
log_oam = log10(oam_all);%--observed data 
 
%Step 2) Calculate the column moments from model data to represent the 
%'current' conditions analysis 
mlog_mam = mean(log_mam(curstart:curend,:)); slog_mam = 
std(log_mam(curstart:curend,:)); 
sklog_mam = skewness(log_mam(curstart:curend,:)); 
%--observed data 
mlog_oam = mean(log_oam); slog_oam = std(log_oam); 
sklog_oam = skewness(log_oam); 
 
%Step 3) Calculate K after Kite (1977) as referenced by Mays (2005), pg 321 
km = sklog_mam/6; 
ko = sklog_oam/6;%--observed data 
 
z = 2.58; %From z table using p = 0.0995 = 1-(1/(2*T))  
          %where T is return period for event (in this case T = 100) 
           
for i = 1:outs; 

K(i) = z+(z^2-1)*km(i)+(1/3)*(z^3-6*z)*km(i)^2-(z^2-1)*km(i)^3+z*km(i)^4+ 
(1/3)*km(i)^5; 

%--observed data 
    Ko = z+(z^2-1)*ko+(1/3)*(z^3-6*z)*ko^2-(z^2-1)*ko^3+z*ko^4+(1/3)*ko^5; 
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end 
 
%Step 4) Calculate the log precipitation value for the T-year event 
for j = 1:outs; 
    logxtm(j) = mlog_mam(j)+K(j)*slog_mam(j); 
end 
%--observed data 
logxto = mlog_oam+Ko*slog_oam; 
     
%Step 5) Calculate the T-year precipitation 
for e = 1:outs 

xtm(e) = 10^(logxtm(e)); 
end 
xto = 10^(logxto);%--observed data 
 
%Convert output into inches to compare with standard storms of US 
xtm_in = xtm/25.4; 
xto_in = xto/25.4;%--observed data 
 
% Repeat process for 2011 - 2040 
f1mlog_mam = mean(log_mam(f1start:f1end,:));  
f1slog_mam = std(log_mam(f1start:f1end,:)); 
f1sklog_mam = skewness(log_mam(f1start:f1end,:)); 
f1km = f1sklog_mam/6; 
for i = 1:outs; 
     f1K(i) = z+(z^2-1)*f1km(i)+(1/3)*(z^3-6*z)*f1km(i)^2-... 
         (z^2-1)*f1km(i)^3+z*f1km(i)^4+(1/3)*f1km(i)^5; 
end 
for j = 1:outs; 
     f1logxtm(j) = f1mlog_mam(j)+f1K(j)*f1slog_mam(j); 
end 
for f = 1:outs; 

f1xtm(f) = 10^(f1logxtm(f)); 
end 
f1xtm_in = f1xtm/25.4; 
 
% Repeat process for 2041 - 2070 
f2mlog_mam = mean(log_mam(f2start:f2end,:));  
f2slog_mam = std(log_mam(f2start:f2end,:)); 
f2sklog_mam = skewness(log_mam(f2start:f2end,:)); 
f2km = f2sklog_mam/6; 
for i = 1:outs; 
     f2K(i) = z+(z^2-1)*f2km(i)+(1/3)*(z^3-6*z)*f2km(i)^2-... 
         (z^2-1)*f2km(i)^3+z*f2km(i)^4+(1/3)*f2km(i)^5; 
end 
for j = 1:outs; 
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    f2logxtm(j) = f2mlog_mam(j)+f2K(j)*f2slog_mam(j); 
end 
for g = 1:outs; 

f2xtm(g) = 10^(f2logxtm(g)); 
end 
f2xtm_in = f2xtm/25.4; 
 
% Repeat process for 2071 - 2099 
f3mlog_mam = mean(log_mam(f3start:f3end,:));  
f3slog_mam = std(log_mam(f3start:f3end,:)); 
f3sklog_mam = skewness(log_mam(f3start:f3end,:)); 
f3km = f3sklog_mam/6; 
for i = 1:outs; 
     f3K(i) = z+(z^2-1)*f3km(i)+(1/3)*(z^3-6*z)*f3km(i)^2-... 
         (z^2-1)*f3km(i)^3+z*f3km(i)^4+(1/3)*f3km(i)^5; 
end 
for j = 1:outs; 

f3logxtm(j) = f3mlog_mam(j)+f3K(j)*f3slog_mam(j); 
end 
for h = 1:outs 

f3xtm(h) = 10^(f3logxtm(h)); 
end 
f3xtm_in = f3xtm/25.4; 
 
*************************************************** ****************** 
%Code estiamtes the 95% CI of the projected mean 100-yr storm event and 
%compiles results from LP3.m into a table. 
 
%Organize output data 
xtm = [xtm_in; f1xtm_in; f2xtm_in; f3xtm_in]; 
 
for alt = 1:4 

A1B_samples(:,alt) = bootstrp(1000,@mean, xtm(alt,1:39)); 
A2_samples(:,alt) = bootstrp(1000,@mean, xtm(alt,40:76)); 
B1_samples(:,alt) = bootstrp(1000,@mean, xtm(alt,77:112)); 
A1B_ci(:,alt) = bootci(1000,@mean, xtm(alt,1:39)); 
A2_ci(:,alt) = bootci(1000,@mean, xtm(alt,40:76)); 
B1_ci(:,alt) = bootci(1000,@mean, xtm(alt,77:112)); 

end 
sample_all = [A1B_samples A2_samples B1_samples]; 
xlswrite('100yr_mean.xls',sample_all,'Sheet1','A3'); 
 
A1B_mean = mean(A1B_samples); 
A2_mean = mean(A2_samples); 
B1_mean = mean(B1_samples); 
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A1B = [A1B_mean; A1B_ci]; 
A2 = [A2_mean; A2_ci]; 
B1 = [B1_mean; B1_ci]; 
out_all = [A1B; A2; B1]; 
xlswrite('100yr_mean.xls',out_all,'Sheet2','C2'); 
 
box_all = [A1B_samples A2_samples B1_samples]; 
boxmax = max(max(box_all)); 
boxmin = min(min(box_all)); 
titles = {'1971-2000' '1981-2040' '2011-2070' '2041-2100'... 
    '1951-2000' '1981-2040' '2011-2070' '2041-2100'... 
    '1951-2000' '1981-2040' '2011-2070' '2041-2100'}; 
yaxes = {'A1B' '  ' '  ' '  ' 'A2' '  ' '  ' '  ' 'B1' '  ' '  ' '  '}; 
for p = 1:12 

subplot(3,4,p); boxplot(box_all(:,p)); 
title(titles(p)); 
axis([0 2 boxmin-2 boxmax]) 
ylabel(yaxes(p)); 

end 
%[fi,xi]=ksdensity(A1_samples); 
%plot(xi,fi) 
 
*************************************************** ****************** 
% Program to determine the data dependency and perform random permutation test and 
Kolmogorov Smirnov (KS) test for temporally dependent data series (Using ‘R’)  
 
data <- read.csv("data.csv", header=T) 
 
y <- data[1:360,3] 
z <- data[1:360,4] 
 
ks.obs <- ks.test(y,z) 
ks.obs 
 
ks.obs <- ks.obs$stat 
 
D <- cbind(y,z) 
N <- nrow(D) 
 
iter <- 1000 
 
KS <- rep(0, iter) 
 
for(it in 1:iter){ 
 
print(it) 
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y.sim <- rep(0, N) 
z.sim <- rep(0, N) 
 
for(i in 1:N){ 
pick <- rbinom(1, 1, 0.5)+1 
 
if(pick==1){ 
y.sim[i] <- D[i,1] 
z.sim[i] <- D[i,2] 
} 
 
if(pick==2){ 
y.sim[i] <- D[i,2] 
z.sim[i] <- D[i,1] 
} 
 
} 
 
KS[it] <- ks.test(y.sim,z.sim)$stat 
 
} 
 
hist(KS, col="yellow") 
abline(v=ks.obs, lwd=3, col="red") 
 
p.value <- mean(KS>ks.obs) 
p.value 
 
ks.obs 
 
acf(y) 
plot(acf(y),xlab="Lag", ylab="Auto Correlation", main="Data Visualization for 
Dependency") 
*************************************************** ****************** 
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APPENDIX D 

DATA FOR HEC-HMS MODEL  

(TASK 3) 
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Table D1 List of historical major flood events in Clark County, Nevada 
 

Event Date Total Rainfall 
No. of gauges / 
Storm period/ 
Max. rainfall 

Location/ Other remarks 

August 27 
2007 

>1” 

9 / 3 am – 5 am 
2” in 30 min 
period 
2.67” in 1 hour 
period 

Near Lakes Detention basin 4359 
(3.11”). Peak flow recorded in 
Flamingo wash (1000 cfs.) and Las 
Vegas Wash at Pabco Rd. (2700 
cfs.) 

August  2 
2007 

>2” in 90 min  

1 pm - 2pm 
2.50” in 90 min 
period 
 

Brownstone Canyon in West Las 
Vegas valley (4329) (2.68”) 

August 19 
2003 

>2” in 90 min   
Mainly in Gowan watershed, 
Historic event 

July 8 1999 
1.5” – 3” in 60-
90 min 

9:15 am -11 am 
2 gauges 3”, 5 
gauges 2”, 12 
gauges >1.5” 

Very big flood event. 100 year 
return period. Over 20 million 
damages. Flow significant in 
Flamingo, DC & LV Wash. 

Sep 11 1998 1” or more 11:30 am 

Low flows in DC and PW. 
Significant flows in FT, Sloan and 
LV Wash. May be a 100 years 
flood for some reaches. 

July 20-24 
1998 

>1” 
July 23 >1” in 20 
min 

 Max flow in Flamingo Wash 

Sep 1 to 3 
1997 

>1.25”   

August 9 to 10 
1997 

2.83” and 2.56” 
in Henderson and 
Boulder city 

1.26” in 15 min. 

Heavy rain in LV, worst condition 
in Henderson and Boulder city 
(very high damage). Exceeded the 
100 yr flood event 

July 28 1996 0.8” 2pm Not so heavy 
August 22-23 
1995 

 
4:30 pm 
0.75” in 15 min 

No damage. Large flow in Spring 
Mountain road and Flamingo road 

August 8 1994 
Max 1.57” 
0.60” <1 hour 

6:15 pm 
Mainly in Gowan 
No damage, lasted for an hour 

Feb 8 1993 
>1.5” for whole 
day 

Henderson (2.40”) 
>1” in Flamingo 

Limited damages only. 
 

Feb 12 1992 1” for whole day. 4 pm-1:30 am Not so heavy 

Sep 6-8 1991  

6 am and through 
the whole 
weekend. 
Las Vegas -10:30 
am to 2 pm 

Significant flows in Flamingo 
wash. Most of the valley received 
little or no rain 

August 10 
1991 

1.25” in an hour 
and 1.65” in 3 
hours 

7 pm 
Light/moderate intensity in valley. 
Higher in CalNevari and Laughlin. 

 
(Note: All of these data are compiled from the annual reports obtained from Clark County 
Regional Flood Control District.  DC: Duck Creek, PW: Pittman Wash).   
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Table D2 List of Stations in the Flamingo Tropicana Watershed in Las Vegas, Nevada 
 

Basins Stations Id Station Name Station Type Latitude Longitude Elevation 
St 4084 4084 Las Vegas Wash near Sahara Avenue Water Level 36° 8' 34" 115° 3' 11" 1637 
St 4274 4274 Downtown Las Vegas Full Weather Station 36° 9' 57" 115° 8' 44" 2102 
St 4304 4304 Blue Diamond Ridge South Full Weather Station 36° 5' 2" 115° 23' 9" 4833 
St 4309 4309 Desert Inn Detention Basin Water Level 36° 7' 47" 115° 14' 32" 2370 
St 4314 4314 Blue Diamond Ridge North Precipitation 36° 6' 27" 115° 23' 52" 4823 
St 4319 4319 Beltway Channel at Town Center Water Level 36° 7' 12" 115° 19' 27" 2800 
St 4324 4324 Red Rock Canyon Precipitation 36° 7' 50" 115° 25' 41" 3625 
St 4329 4329 Brownstone Canyon Precipitation 36° 10' 50" 115° 25' 3" 4423 
St 4334 4334 Upper Flamingo 1 Precipitation 36° 3' 29" 115° 19' 20" 2979 
St 4339 4339 Beltway Channel at Peace Way Water Level 36° 6' 26" 115° 17' 49" 2625 
St 4344 4344 Red Rock DB Water Level 36° 9' 9" 115° 21' 17" 3136 
St 4349 4349 Upper Flamingo DB Water Level 36° 5' 24" 115° 16' 14" 2388 
St 4354 4354 The Lakes Full Weather Station 36° 7' 28" 115° 17' 8" 2541 
St 4359 4359 The Lakes Detention Basin Water Level 36° 7' 40" 115° 16' 42" 2527 
St 4364 4364 Flamingo Wash at Torrey Pines Water Level 36° 6' 10" 115° 14' 3" 2218 
St 4369 4369 Flamingo Wash at Decatur Blvd Water Level 36° 6' 8" 115° 12' 29" 2159 
St 4374 4374 Flamingo Wash at Eastern Water Level 36° 7' 23" 115° 7' 9" 1790 
St 4379 4379 VanBuskirk DB Water Level 36° 6' 30" 115° 6' 41" 1834 
St 4384 4384 Desert Inn Super Arterial Water Level 36° 7' 47" 115° 9' 50"  
St 4394 4394 Flamingo Wash at Nellis Blvd Water Level 36° 8' 32" 115° 3' 60" 1673 
St 4399 4399 Flamingo Wash near Mojave Water Level 36° 7' 59" 115° 6' 12" 1783 
St 4404 4404 F-1 Debris Basin Water Level 36° 5' 50" 115° 20' 20" 2842 
St 4409 4409 F-2 Debris Basin Water Level 36° 4' 48" 115° 19' 44" 2716 
St 4414 4414 Blue Diamond Detention Basin Water Level 36° 1' 55" 115° 19' 1" 2899 
St 4424 4424 F-1 Channel Water Level 36° 5' 14" 115° 18' 48" 2621 
St 4434 4434 Beltway Channel at Buffalo Water Level 36° 3' 58" 115° 15' 15" 2520 
St 4444 4444 R-4 Detention Basin Water Level 36° 6' 46" 115° 21' 13" 2981 
St 4449 4449 R-4 Channel Water Level 36° 7' 14" 115° 19' 54" 2789 
St 4454 4454 Warm Springs/Jones Precipitation 36° 3' 24" 115° 13' 24" 2440 
St 4474 4474 Tropicana Wash DB Water Level 36° 4' 54" 115° 11' 59" 2290 
St 4484 4484 Tropicana Wash at Swenson Water Level 36° 6' 51" 115° 8' 49" 2030 
St 4574 4574 Flamingo Wash near Spencer Water Level 36° 7' 11" 115° 7' 44" 1828 
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Table D3 Modeled streamflow and volume for an average, minimum and maximum 
change in precipitation for future climate. Precipitation here represents an average of 
precipitation from all climate projections for each emission scenario (A1B, A2, B1). 
 

  Modeled Streamflow 
 Peak Streamflow (cfs) Total Volume (ac ft) 

For flood event 
on July 8 1999 

13924.4 1791.8 

 Streamflow for average change in precipitation 

 A1B A2 B1 A1B A2 B1 
2011-2040 18930.6 19608 17115 2357.7 2431.9 2172 
2041-2070 18653.1 20439 19603 2327.4 2520.9 2431.4 
2071-2100 20738.3 24536 20261 2552.6 2932.1 2501.9 

 Streamflow for maximum change in precipitation 

 A1B A2 B1 A1B A2 B1 
2011-2040 34133.4 31693 25712 3892.5 3650 3047.6 
2041-2070 30593.6 32922 39447 3527.6 3771.6 4413.9 
2071-2100 33101.6 38255 33361 3789 4296.9 3816.7 

 Streamflow for minimum change in precipitation 

 A1B A2 B1 A1B A2 B1 
2011-2040 11229 12708 9782.9 1482.8 1653.6 1312.8 
2041-2070 10690.6 13102 11890 1420.1 1699.5 1559.2 
2071-2100 13261.6 10725 9196.2 1717.9 1424.1 1243.7 

 
 

Table D4 Range of precipitation (inches) for 100 year return period storm based on 
modeled maximum monthly precipitation. The lower 5% and upper 95%             

represents its confidence intervals. 
 

Scenarios  Confidence 
Interval 

Monthly Precipitation (inches) 
1951-
2000 

1981-
2040 

2011-
2070 

2041-
2100 

A1B Mean 5.18 6.71 7.01 7.63 
 Lower 5 4.93 6.16 6.30 6.93 
  Upper 95 5.47 7.32 7.74 8.42 
A2 Mean 5.27 6.61 7.05 7.92 
 Lower 5 5.00 6.12 6.44 7.06 
  Upper 95 5.55 7.34 7.77 8.97 
B1 Mean 5.21 6.49 7.03 7.59 
 Lower 5 4.98 5.93 6.54 6.98 
  Upper 95 5.50 7.09 7.57 8.38 
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Table D5 Modeled streamflow and volume for a mean change in annual maximum 
precipitation (mm/month). The lower 5% and upper 95% represents its                   

confidence intervals. 
 

  Modeled Streamflow 
 Peak Streamflow (cfs) Total Volume (ac ft) 
 Mean  
 A1B A2 B1 A1B A2 B1 

2011-2040 20804 19854 19704 2560.1 2457.5 2441.7 
2041-2070 25615 22029 22447 3046.8 2685.5 2728.1 
2071-2100 22373 26330 25454 2720.5 3118.1 3030.7 

 Lower 5% 
 A1B A2 B1 A1B A2 B1 

2011-2040 20095 18763 18765 2483.9 2338.8 2336.8 
2041-2070 23983 21059 21869 2883.1 2586.6 2669.5 
2071-2100 21059 23851 24066 2586.6 2869.7 2891.3 

 Upper 95% 
 A1B A2 B1 A1B A2 B1 

2011-2040 21579 21059 20509 2640.1 2586.6 2528.4 
2041-2070 26992 23441 23140 3184.3 2829 2798.5 
2071-2100 23983 29119 26909 2883.1 3395.7 3176.3 
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